L(s) = 1 | + (−1.59 − 1.25i)2-s + (1.76 − 2.47i)3-s + (0.502 + 2.07i)4-s + (−2.84 + 0.549i)5-s + (−5.92 + 1.73i)6-s + (−2.63 + 0.260i)7-s + (0.110 − 0.242i)8-s + (−2.03 − 5.88i)9-s + (5.24 + 2.70i)10-s + (0.552 − 0.434i)11-s + (6.00 + 2.40i)12-s + (3.04 − 1.95i)13-s + (4.53 + 2.89i)14-s + (−3.66 + 8.01i)15-s + (3.30 − 1.70i)16-s + (−3.27 − 3.11i)17-s + ⋯ |
L(s) = 1 | + (−1.12 − 0.888i)2-s + (1.01 − 1.42i)3-s + (0.251 + 1.03i)4-s + (−1.27 + 0.245i)5-s + (−2.41 + 0.709i)6-s + (−0.995 + 0.0982i)7-s + (0.0390 − 0.0855i)8-s + (−0.678 − 1.96i)9-s + (1.65 + 0.854i)10-s + (0.166 − 0.131i)11-s + (1.73 + 0.694i)12-s + (0.845 − 0.543i)13-s + (1.21 + 0.773i)14-s + (−0.945 + 2.06i)15-s + (0.826 − 0.426i)16-s + (−0.793 − 0.756i)17-s + ⋯ |
Λ(s)=(=(161s/2ΓC(s)L(s)(−0.952−0.305i)Λ(2−s)
Λ(s)=(=(161s/2ΓC(s+1/2)L(s)(−0.952−0.305i)Λ(1−s)
Degree: |
2 |
Conductor: |
161
= 7⋅23
|
Sign: |
−0.952−0.305i
|
Analytic conductor: |
1.28559 |
Root analytic conductor: |
1.13383 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ161(100,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 161, ( :1/2), −0.952−0.305i)
|
Particular Values
L(1) |
≈ |
0.0834494+0.533426i |
L(21) |
≈ |
0.0834494+0.533426i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1+(2.63−0.260i)T |
| 23 | 1+(4.72+0.838i)T |
good | 2 | 1+(1.59+1.25i)T+(0.471+1.94i)T2 |
| 3 | 1+(−1.76+2.47i)T+(−0.981−2.83i)T2 |
| 5 | 1+(2.84−0.549i)T+(4.64−1.85i)T2 |
| 11 | 1+(−0.552+0.434i)T+(2.59−10.6i)T2 |
| 13 | 1+(−3.04+1.95i)T+(5.40−11.8i)T2 |
| 17 | 1+(3.27+3.11i)T+(0.808+16.9i)T2 |
| 19 | 1+(−2.90+2.76i)T+(0.904−18.9i)T2 |
| 29 | 1+(−8.16+2.39i)T+(24.3−15.6i)T2 |
| 31 | 1+(0.658−0.0628i)T+(30.4−5.86i)T2 |
| 37 | 1+(−2.87−8.31i)T+(−29.0+22.8i)T2 |
| 41 | 1+(0.195+0.225i)T+(−5.83+40.5i)T2 |
| 43 | 1+(2.93+6.42i)T+(−28.1+32.4i)T2 |
| 47 | 1+(−3.07+5.31i)T+(−23.5−40.7i)T2 |
| 53 | 1+(0.00171−0.0359i)T+(−52.7−5.03i)T2 |
| 59 | 1+(−1.03−0.532i)T+(34.2+48.0i)T2 |
| 61 | 1+(0.748+1.05i)T+(−19.9+57.6i)T2 |
| 67 | 1+(1.11−0.447i)T+(48.4−46.2i)T2 |
| 71 | 1+(1.99−13.8i)T+(−68.1−20.0i)T2 |
| 73 | 1+(0.289+1.19i)T+(−64.8+33.4i)T2 |
| 79 | 1+(0.169+3.54i)T+(−78.6+7.50i)T2 |
| 83 | 1+(−7.99+9.22i)T+(−11.8−82.1i)T2 |
| 89 | 1+(−11.7−1.12i)T+(87.3+16.8i)T2 |
| 97 | 1+(1.51+1.74i)T+(−13.8+96.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.99832765774048033737459753180, −11.62889296154104776180716471263, −10.20902386788805182619384910863, −8.978602337722509480428068839138, −8.347618493089077265090184576842, −7.48658444997203497737744830024, −6.48195113586280397339360341800, −3.47459431210530590428012275045, −2.60162290782447156972204715984, −0.66506896995692757795492370831,
3.49645953302534030438001838024, 4.22225216576648467323937488592, 6.26085255965382024077056859692, 7.66540262472126346099398329415, 8.452041278237618130837779580678, 9.140982862167710014855839383747, 9.961993372211636215069096810778, 10.90334182371402359085923405590, 12.37240418504198635798309019092, 13.82017111697639109846352825367