L(s) = 1 | + (−0.733 − 0.576i)2-s + (−0.358 + 0.503i)3-s + (−0.266 − 1.09i)4-s + (−3.83 + 0.738i)5-s + (0.553 − 0.162i)6-s + (1.47 + 2.19i)7-s + (−1.21 + 2.65i)8-s + (0.856 + 2.47i)9-s + (3.23 + 1.66i)10-s + (−1.69 + 1.32i)11-s + (0.648 + 0.259i)12-s + (0.00277 − 0.00178i)13-s + (0.190 − 2.46i)14-s + (1.00 − 2.19i)15-s + (0.413 − 0.213i)16-s + (−5.42 − 5.17i)17-s + ⋯ |
L(s) = 1 | + (−0.518 − 0.407i)2-s + (−0.206 + 0.290i)3-s + (−0.133 − 0.548i)4-s + (−1.71 + 0.330i)5-s + (0.225 − 0.0663i)6-s + (0.555 + 0.831i)7-s + (−0.428 + 0.939i)8-s + (0.285 + 0.824i)9-s + (1.02 + 0.527i)10-s + (−0.509 + 0.400i)11-s + (0.187 + 0.0748i)12-s + (0.000769 − 0.000494i)13-s + (0.0508 − 0.657i)14-s + (0.258 − 0.566i)15-s + (0.103 − 0.0532i)16-s + (−1.31 − 1.25i)17-s + ⋯ |
Λ(s)=(=(161s/2ΓC(s)L(s)(−0.366−0.930i)Λ(2−s)
Λ(s)=(=(161s/2ΓC(s+1/2)L(s)(−0.366−0.930i)Λ(1−s)
Degree: |
2 |
Conductor: |
161
= 7⋅23
|
Sign: |
−0.366−0.930i
|
Analytic conductor: |
1.28559 |
Root analytic conductor: |
1.13383 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ161(100,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 161, ( :1/2), −0.366−0.930i)
|
Particular Values
L(1) |
≈ |
0.173277+0.254431i |
L(21) |
≈ |
0.173277+0.254431i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1+(−1.47−2.19i)T |
| 23 | 1+(−4.79+0.0906i)T |
good | 2 | 1+(0.733+0.576i)T+(0.471+1.94i)T2 |
| 3 | 1+(0.358−0.503i)T+(−0.981−2.83i)T2 |
| 5 | 1+(3.83−0.738i)T+(4.64−1.85i)T2 |
| 11 | 1+(1.69−1.32i)T+(2.59−10.6i)T2 |
| 13 | 1+(−0.00277+0.00178i)T+(5.40−11.8i)T2 |
| 17 | 1+(5.42+5.17i)T+(0.808+16.9i)T2 |
| 19 | 1+(4.04−3.85i)T+(0.904−18.9i)T2 |
| 29 | 1+(4.90−1.44i)T+(24.3−15.6i)T2 |
| 31 | 1+(2.62−0.250i)T+(30.4−5.86i)T2 |
| 37 | 1+(−0.268−0.775i)T+(−29.0+22.8i)T2 |
| 41 | 1+(−4.66−5.38i)T+(−5.83+40.5i)T2 |
| 43 | 1+(2.84+6.23i)T+(−28.1+32.4i)T2 |
| 47 | 1+(−3.03+5.26i)T+(−23.5−40.7i)T2 |
| 53 | 1+(0.306−6.44i)T+(−52.7−5.03i)T2 |
| 59 | 1+(−9.04−4.66i)T+(34.2+48.0i)T2 |
| 61 | 1+(0.0837+0.117i)T+(−19.9+57.6i)T2 |
| 67 | 1+(−0.798+0.319i)T+(48.4−46.2i)T2 |
| 71 | 1+(0.271−1.88i)T+(−68.1−20.0i)T2 |
| 73 | 1+(−2.49−10.3i)T+(−64.8+33.4i)T2 |
| 79 | 1+(0.0546+1.14i)T+(−78.6+7.50i)T2 |
| 83 | 1+(1.69−1.95i)T+(−11.8−82.1i)T2 |
| 89 | 1+(7.39+0.706i)T+(87.3+16.8i)T2 |
| 97 | 1+(1.92+2.22i)T+(−13.8+96.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.94869705986565790551552352399, −11.70145790610223529868135615004, −11.16587135851766500197995427105, −10.47453128660293513631044991913, −9.065886262889047908614644283420, −8.196124430712571522079362489155, −7.15273791700332019933832459098, −5.30096507738647818620828404076, −4.39362141745942351491715644754, −2.38648327737454390299589687418,
0.35039510679551985364481709771, 3.68896567736420990869254215249, 4.43232667440606070561524626951, 6.67136658854521105781803568530, 7.44489492464727499995366641636, 8.294033588109313716220534739465, 9.037299714390330856646096414272, 10.87927223491952469937680909421, 11.45267953907139225602925180312, 12.77059206983852914085892790169