L(s) = 1 | + (−5 − 5i)2-s + 34i·4-s + (−40 − 40i)7-s + (90 − 90i)8-s + 100·11-s + (−205 + 205i)13-s + 400i·14-s − 356·16-s + (235 + 235i)17-s + 72i·19-s + (−500 − 500i)22-s + (340 − 340i)23-s + 2.05e3·26-s + (1.36e3 − 1.36e3i)28-s − 450i·29-s + ⋯ |
L(s) = 1 | + (−1.25 − 1.25i)2-s + 2.12i·4-s + (−0.816 − 0.816i)7-s + (1.40 − 1.40i)8-s + 0.826·11-s + (−1.21 + 1.21i)13-s + 2.04i·14-s − 1.39·16-s + (0.813 + 0.813i)17-s + 0.199i·19-s + (−1.03 − 1.03i)22-s + (0.642 − 0.642i)23-s + 3.03·26-s + (1.73 − 1.73i)28-s − 0.535i·29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.525 + 0.850i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (-0.525 + 0.850i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{5}{2})\) |
\(\approx\) |
\(0.6961814615\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6961814615\) |
\(L(3)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 2 | \( 1 + (5 + 5i)T + 16iT^{2} \) |
| 7 | \( 1 + (40 + 40i)T + 2.40e3iT^{2} \) |
| 11 | \( 1 - 100T + 1.46e4T^{2} \) |
| 13 | \( 1 + (205 - 205i)T - 2.85e4iT^{2} \) |
| 17 | \( 1 + (-235 - 235i)T + 8.35e4iT^{2} \) |
| 19 | \( 1 - 72iT - 1.30e5T^{2} \) |
| 23 | \( 1 + (-340 + 340i)T - 2.79e5iT^{2} \) |
| 29 | \( 1 + 450iT - 7.07e5T^{2} \) |
| 31 | \( 1 - 428T + 9.23e5T^{2} \) |
| 37 | \( 1 + (-755 - 755i)T + 1.87e6iT^{2} \) |
| 41 | \( 1 + 950T + 2.82e6T^{2} \) |
| 43 | \( 1 + (-1.22e3 + 1.22e3i)T - 3.41e6iT^{2} \) |
| 47 | \( 1 + (320 + 320i)T + 4.87e6iT^{2} \) |
| 53 | \( 1 + (-505 + 505i)T - 7.89e6iT^{2} \) |
| 59 | \( 1 + 6.30e3iT - 1.21e7T^{2} \) |
| 61 | \( 1 + 3.80e3T + 1.38e7T^{2} \) |
| 67 | \( 1 + (340 + 340i)T + 2.01e7iT^{2} \) |
| 71 | \( 1 - 3.40e3T + 2.54e7T^{2} \) |
| 73 | \( 1 + (415 - 415i)T - 2.83e7iT^{2} \) |
| 79 | \( 1 + 6.73e3iT - 3.89e7T^{2} \) |
| 83 | \( 1 + (680 - 680i)T - 4.74e7iT^{2} \) |
| 89 | \( 1 + 2.25e3iT - 6.27e7T^{2} \) |
| 97 | \( 1 + (1.61e3 + 1.61e3i)T + 8.85e7iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.11385556199981111731292423258, −10.04268257726611438736544189119, −9.663097263903648864458703601541, −8.646641004581178818301940321185, −7.48053821921976246047605180182, −6.54134463421956447481481867721, −4.30979887746477267789746802694, −3.25326031773844633564459783131, −1.84086838659847668743561398281, −0.51567598124899780364380947199,
0.862739879971723463749068713037, 2.90560698767633612603061888739, 5.16558009206864449825766281670, 6.00453033174155040040550302402, 7.08091145760234816016596989323, 7.83279676325583435813297537143, 9.082939296319899880194501579623, 9.530864410124089713032656812577, 10.41952192063191232877441505612, 11.85551565989374780469247076040