L(s) = 1 | + (−2.47 − 0.526i)2-s + (−1.29 + 1.15i)3-s + (4.03 + 1.79i)4-s + (1.67 − 1.48i)5-s + (3.81 − 2.16i)6-s + (−1.03 + 1.79i)7-s + (−4.94 − 3.59i)8-s + (0.350 − 2.97i)9-s + (−4.92 + 2.80i)10-s + (−2.39 − 0.509i)11-s + (−7.28 + 2.31i)12-s + (1.74 − 0.371i)13-s + (3.50 − 3.89i)14-s + (−0.452 + 3.84i)15-s + (4.44 + 4.94i)16-s + (3.67 + 2.66i)17-s + ⋯ |
L(s) = 1 | + (−1.75 − 0.372i)2-s + (−0.747 + 0.664i)3-s + (2.01 + 0.897i)4-s + (0.747 − 0.664i)5-s + (1.55 − 0.885i)6-s + (−0.390 + 0.676i)7-s + (−1.74 − 1.26i)8-s + (0.116 − 0.993i)9-s + (−1.55 + 0.885i)10-s + (−0.722 − 0.153i)11-s + (−2.10 + 0.668i)12-s + (0.484 − 0.102i)13-s + (0.936 − 1.04i)14-s + (−0.116 + 0.993i)15-s + (1.11 + 1.23i)16-s + (0.891 + 0.647i)17-s + ⋯ |
Λ(s)=(=(225s/2ΓC(s)L(s)(0.881−0.472i)Λ(2−s)
Λ(s)=(=(225s/2ΓC(s+1/2)L(s)(0.881−0.472i)Λ(1−s)
Degree: |
2 |
Conductor: |
225
= 32⋅52
|
Sign: |
0.881−0.472i
|
Analytic conductor: |
1.79663 |
Root analytic conductor: |
1.34038 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ225(106,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 225, ( :1/2), 0.881−0.472i)
|
Particular Values
L(1) |
≈ |
0.456025+0.114427i |
L(21) |
≈ |
0.456025+0.114427i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(1.29−1.15i)T |
| 5 | 1+(−1.67+1.48i)T |
good | 2 | 1+(2.47+0.526i)T+(1.82+0.813i)T2 |
| 7 | 1+(1.03−1.79i)T+(−3.5−6.06i)T2 |
| 11 | 1+(2.39+0.509i)T+(10.0+4.47i)T2 |
| 13 | 1+(−1.74+0.371i)T+(11.8−5.28i)T2 |
| 17 | 1+(−3.67−2.66i)T+(5.25+16.1i)T2 |
| 19 | 1+(−5.85−4.25i)T+(5.87+18.0i)T2 |
| 23 | 1+(−1.58+1.75i)T+(−2.40−22.8i)T2 |
| 29 | 1+(−0.855−8.13i)T+(−28.3+6.02i)T2 |
| 31 | 1+(0.709−6.74i)T+(−30.3−6.44i)T2 |
| 37 | 1+(−1.53+4.73i)T+(−29.9−21.7i)T2 |
| 41 | 1+(−4.68+0.995i)T+(37.4−16.6i)T2 |
| 43 | 1+(−4.14+7.17i)T+(−21.5−37.2i)T2 |
| 47 | 1+(−1.05−10.0i)T+(−45.9+9.77i)T2 |
| 53 | 1+(2.52−1.83i)T+(16.3−50.4i)T2 |
| 59 | 1+(10.2−2.17i)T+(53.8−23.9i)T2 |
| 61 | 1+(−2.57−0.548i)T+(55.7+24.8i)T2 |
| 67 | 1+(−0.170+1.62i)T+(−65.5−13.9i)T2 |
| 71 | 1+(−8.24+5.98i)T+(21.9−67.5i)T2 |
| 73 | 1+(0.608+1.87i)T+(−59.0+42.9i)T2 |
| 79 | 1+(1.55+14.8i)T+(−77.2+16.4i)T2 |
| 83 | 1+(−3.70+1.65i)T+(55.5−61.6i)T2 |
| 89 | 1+(−0.105−0.326i)T+(−72.0+52.3i)T2 |
| 97 | 1+(−1.15−10.9i)T+(−94.8+20.1i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.25111556557661049973649842053, −10.79499701896827361778627809002, −10.37264379734685469245952919670, −9.362989314057613446765116276665, −8.885997463423283558030770654234, −7.67510081974011972612317841798, −6.17140885690663740883443589922, −5.34249557875273612518377990678, −3.13801780513246908978135179245, −1.24924017804354877153219695777,
0.905369034657321267552485791033, 2.57290968824194517097890269377, 5.48882783992019169058045351198, 6.46974501799522182227595865812, 7.30442377893333359271848317523, 7.894604997789627436702431697799, 9.572998604859615837044511625731, 9.979180100663370330183351105602, 11.02571109590368636374857653269, 11.57480147460216937370261901147