Properties

Label 2-15e2-225.106-c1-0-3
Degree $2$
Conductor $225$
Sign $-0.758 - 0.651i$
Analytic cond. $1.79663$
Root an. cond. $1.34038$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.429 + 0.0913i)2-s + (0.335 + 1.69i)3-s + (−1.65 − 0.735i)4-s + (−1.76 + 1.36i)5-s + (−0.0109 + 0.760i)6-s + (−0.888 + 1.53i)7-s + (−1.35 − 0.982i)8-s + (−2.77 + 1.14i)9-s + (−0.885 + 0.425i)10-s + (4.21 + 0.895i)11-s + (0.694 − 3.05i)12-s + (−6.27 + 1.33i)13-s + (−0.522 + 0.579i)14-s + (−2.91 − 2.54i)15-s + (1.92 + 2.14i)16-s + (0.162 + 0.118i)17-s + ⋯
L(s)  = 1  + (0.303 + 0.0645i)2-s + (0.193 + 0.981i)3-s + (−0.825 − 0.367i)4-s + (−0.791 + 0.611i)5-s + (−0.00446 + 0.310i)6-s + (−0.335 + 0.581i)7-s + (−0.478 − 0.347i)8-s + (−0.924 + 0.380i)9-s + (−0.279 + 0.134i)10-s + (1.26 + 0.269i)11-s + (0.200 − 0.881i)12-s + (−1.74 + 0.369i)13-s + (−0.139 + 0.154i)14-s + (−0.753 − 0.657i)15-s + (0.481 + 0.535i)16-s + (0.0395 + 0.0287i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.758 - 0.651i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.758 - 0.651i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(225\)    =    \(3^{2} \cdot 5^{2}\)
Sign: $-0.758 - 0.651i$
Analytic conductor: \(1.79663\)
Root analytic conductor: \(1.34038\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{225} (106, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 225,\ (\ :1/2),\ -0.758 - 0.651i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.286334 + 0.772267i\)
\(L(\frac12)\) \(\approx\) \(0.286334 + 0.772267i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-0.335 - 1.69i)T \)
5 \( 1 + (1.76 - 1.36i)T \)
good2 \( 1 + (-0.429 - 0.0913i)T + (1.82 + 0.813i)T^{2} \)
7 \( 1 + (0.888 - 1.53i)T + (-3.5 - 6.06i)T^{2} \)
11 \( 1 + (-4.21 - 0.895i)T + (10.0 + 4.47i)T^{2} \)
13 \( 1 + (6.27 - 1.33i)T + (11.8 - 5.28i)T^{2} \)
17 \( 1 + (-0.162 - 0.118i)T + (5.25 + 16.1i)T^{2} \)
19 \( 1 + (-4.79 - 3.48i)T + (5.87 + 18.0i)T^{2} \)
23 \( 1 + (-1.83 + 2.03i)T + (-2.40 - 22.8i)T^{2} \)
29 \( 1 + (-0.0773 - 0.735i)T + (-28.3 + 6.02i)T^{2} \)
31 \( 1 + (0.289 - 2.75i)T + (-30.3 - 6.44i)T^{2} \)
37 \( 1 + (1.36 - 4.21i)T + (-29.9 - 21.7i)T^{2} \)
41 \( 1 + (-12.3 + 2.61i)T + (37.4 - 16.6i)T^{2} \)
43 \( 1 + (3.91 - 6.78i)T + (-21.5 - 37.2i)T^{2} \)
47 \( 1 + (0.0518 + 0.493i)T + (-45.9 + 9.77i)T^{2} \)
53 \( 1 + (-5.99 + 4.35i)T + (16.3 - 50.4i)T^{2} \)
59 \( 1 + (9.52 - 2.02i)T + (53.8 - 23.9i)T^{2} \)
61 \( 1 + (9.51 + 2.02i)T + (55.7 + 24.8i)T^{2} \)
67 \( 1 + (0.0149 - 0.141i)T + (-65.5 - 13.9i)T^{2} \)
71 \( 1 + (-1.95 + 1.41i)T + (21.9 - 67.5i)T^{2} \)
73 \( 1 + (0.860 + 2.64i)T + (-59.0 + 42.9i)T^{2} \)
79 \( 1 + (1.34 + 12.7i)T + (-77.2 + 16.4i)T^{2} \)
83 \( 1 + (-3.13 + 1.39i)T + (55.5 - 61.6i)T^{2} \)
89 \( 1 + (-3.29 - 10.1i)T + (-72.0 + 52.3i)T^{2} \)
97 \( 1 + (-1.65 - 15.7i)T + (-94.8 + 20.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.31404372636336647288160682058, −11.86132489397014026806398753040, −10.51131399911384077869698335501, −9.562845726982192665503596507479, −9.088588987982817377872862066349, −7.71383149734483438350758336359, −6.34101877452598431385546924339, −5.02634211347520659503166412017, −4.14388478769693578212847889894, −3.03523582772307085497534197825, 0.63382424947647006242713611932, 3.09266965104391091818712969343, 4.25972730310862628328875707065, 5.47710736342166051376945518458, 7.15548360030558150758718569455, 7.68556126318465741316015865898, 8.931186802447378671827980162404, 9.532812416276354449331812656994, 11.42414143082954279569235176885, 12.14340421107266642983958845414

Graph of the $Z$-function along the critical line