L(s) = 1 | + (0.429 + 0.0913i)2-s + (0.335 + 1.69i)3-s + (−1.65 − 0.735i)4-s + (−1.76 + 1.36i)5-s + (−0.0109 + 0.760i)6-s + (−0.888 + 1.53i)7-s + (−1.35 − 0.982i)8-s + (−2.77 + 1.14i)9-s + (−0.885 + 0.425i)10-s + (4.21 + 0.895i)11-s + (0.694 − 3.05i)12-s + (−6.27 + 1.33i)13-s + (−0.522 + 0.579i)14-s + (−2.91 − 2.54i)15-s + (1.92 + 2.14i)16-s + (0.162 + 0.118i)17-s + ⋯ |
L(s) = 1 | + (0.303 + 0.0645i)2-s + (0.193 + 0.981i)3-s + (−0.825 − 0.367i)4-s + (−0.791 + 0.611i)5-s + (−0.00446 + 0.310i)6-s + (−0.335 + 0.581i)7-s + (−0.478 − 0.347i)8-s + (−0.924 + 0.380i)9-s + (−0.279 + 0.134i)10-s + (1.26 + 0.269i)11-s + (0.200 − 0.881i)12-s + (−1.74 + 0.369i)13-s + (−0.139 + 0.154i)14-s + (−0.753 − 0.657i)15-s + (0.481 + 0.535i)16-s + (0.0395 + 0.0287i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.758 - 0.651i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.758 - 0.651i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.286334 + 0.772267i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.286334 + 0.772267i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.335 - 1.69i)T \) |
| 5 | \( 1 + (1.76 - 1.36i)T \) |
good | 2 | \( 1 + (-0.429 - 0.0913i)T + (1.82 + 0.813i)T^{2} \) |
| 7 | \( 1 + (0.888 - 1.53i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-4.21 - 0.895i)T + (10.0 + 4.47i)T^{2} \) |
| 13 | \( 1 + (6.27 - 1.33i)T + (11.8 - 5.28i)T^{2} \) |
| 17 | \( 1 + (-0.162 - 0.118i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (-4.79 - 3.48i)T + (5.87 + 18.0i)T^{2} \) |
| 23 | \( 1 + (-1.83 + 2.03i)T + (-2.40 - 22.8i)T^{2} \) |
| 29 | \( 1 + (-0.0773 - 0.735i)T + (-28.3 + 6.02i)T^{2} \) |
| 31 | \( 1 + (0.289 - 2.75i)T + (-30.3 - 6.44i)T^{2} \) |
| 37 | \( 1 + (1.36 - 4.21i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (-12.3 + 2.61i)T + (37.4 - 16.6i)T^{2} \) |
| 43 | \( 1 + (3.91 - 6.78i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (0.0518 + 0.493i)T + (-45.9 + 9.77i)T^{2} \) |
| 53 | \( 1 + (-5.99 + 4.35i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (9.52 - 2.02i)T + (53.8 - 23.9i)T^{2} \) |
| 61 | \( 1 + (9.51 + 2.02i)T + (55.7 + 24.8i)T^{2} \) |
| 67 | \( 1 + (0.0149 - 0.141i)T + (-65.5 - 13.9i)T^{2} \) |
| 71 | \( 1 + (-1.95 + 1.41i)T + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (0.860 + 2.64i)T + (-59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (1.34 + 12.7i)T + (-77.2 + 16.4i)T^{2} \) |
| 83 | \( 1 + (-3.13 + 1.39i)T + (55.5 - 61.6i)T^{2} \) |
| 89 | \( 1 + (-3.29 - 10.1i)T + (-72.0 + 52.3i)T^{2} \) |
| 97 | \( 1 + (-1.65 - 15.7i)T + (-94.8 + 20.1i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.31404372636336647288160682058, −11.86132489397014026806398753040, −10.51131399911384077869698335501, −9.562845726982192665503596507479, −9.088588987982817377872862066349, −7.71383149734483438350758336359, −6.34101877452598431385546924339, −5.02634211347520659503166412017, −4.14388478769693578212847889894, −3.03523582772307085497534197825,
0.63382424947647006242713611932, 3.09266965104391091818712969343, 4.25972730310862628328875707065, 5.47710736342166051376945518458, 7.15548360030558150758718569455, 7.68556126318465741316015865898, 8.931186802447378671827980162404, 9.532812416276354449331812656994, 11.42414143082954279569235176885, 12.14340421107266642983958845414