L(s) = 1 | + (0.429 + 0.0913i)2-s + (0.335 + 1.69i)3-s + (−1.65 − 0.735i)4-s + (−1.76 + 1.36i)5-s + (−0.0109 + 0.760i)6-s + (−0.888 + 1.53i)7-s + (−1.35 − 0.982i)8-s + (−2.77 + 1.14i)9-s + (−0.885 + 0.425i)10-s + (4.21 + 0.895i)11-s + (0.694 − 3.05i)12-s + (−6.27 + 1.33i)13-s + (−0.522 + 0.579i)14-s + (−2.91 − 2.54i)15-s + (1.92 + 2.14i)16-s + (0.162 + 0.118i)17-s + ⋯ |
L(s) = 1 | + (0.303 + 0.0645i)2-s + (0.193 + 0.981i)3-s + (−0.825 − 0.367i)4-s + (−0.791 + 0.611i)5-s + (−0.00446 + 0.310i)6-s + (−0.335 + 0.581i)7-s + (−0.478 − 0.347i)8-s + (−0.924 + 0.380i)9-s + (−0.279 + 0.134i)10-s + (1.26 + 0.269i)11-s + (0.200 − 0.881i)12-s + (−1.74 + 0.369i)13-s + (−0.139 + 0.154i)14-s + (−0.753 − 0.657i)15-s + (0.481 + 0.535i)16-s + (0.0395 + 0.0287i)17-s + ⋯ |
Λ(s)=(=(225s/2ΓC(s)L(s)(−0.758−0.651i)Λ(2−s)
Λ(s)=(=(225s/2ΓC(s+1/2)L(s)(−0.758−0.651i)Λ(1−s)
Degree: |
2 |
Conductor: |
225
= 32⋅52
|
Sign: |
−0.758−0.651i
|
Analytic conductor: |
1.79663 |
Root analytic conductor: |
1.34038 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ225(106,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 225, ( :1/2), −0.758−0.651i)
|
Particular Values
L(1) |
≈ |
0.286334+0.772267i |
L(21) |
≈ |
0.286334+0.772267i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.335−1.69i)T |
| 5 | 1+(1.76−1.36i)T |
good | 2 | 1+(−0.429−0.0913i)T+(1.82+0.813i)T2 |
| 7 | 1+(0.888−1.53i)T+(−3.5−6.06i)T2 |
| 11 | 1+(−4.21−0.895i)T+(10.0+4.47i)T2 |
| 13 | 1+(6.27−1.33i)T+(11.8−5.28i)T2 |
| 17 | 1+(−0.162−0.118i)T+(5.25+16.1i)T2 |
| 19 | 1+(−4.79−3.48i)T+(5.87+18.0i)T2 |
| 23 | 1+(−1.83+2.03i)T+(−2.40−22.8i)T2 |
| 29 | 1+(−0.0773−0.735i)T+(−28.3+6.02i)T2 |
| 31 | 1+(0.289−2.75i)T+(−30.3−6.44i)T2 |
| 37 | 1+(1.36−4.21i)T+(−29.9−21.7i)T2 |
| 41 | 1+(−12.3+2.61i)T+(37.4−16.6i)T2 |
| 43 | 1+(3.91−6.78i)T+(−21.5−37.2i)T2 |
| 47 | 1+(0.0518+0.493i)T+(−45.9+9.77i)T2 |
| 53 | 1+(−5.99+4.35i)T+(16.3−50.4i)T2 |
| 59 | 1+(9.52−2.02i)T+(53.8−23.9i)T2 |
| 61 | 1+(9.51+2.02i)T+(55.7+24.8i)T2 |
| 67 | 1+(0.0149−0.141i)T+(−65.5−13.9i)T2 |
| 71 | 1+(−1.95+1.41i)T+(21.9−67.5i)T2 |
| 73 | 1+(0.860+2.64i)T+(−59.0+42.9i)T2 |
| 79 | 1+(1.34+12.7i)T+(−77.2+16.4i)T2 |
| 83 | 1+(−3.13+1.39i)T+(55.5−61.6i)T2 |
| 89 | 1+(−3.29−10.1i)T+(−72.0+52.3i)T2 |
| 97 | 1+(−1.65−15.7i)T+(−94.8+20.1i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.31404372636336647288160682058, −11.86132489397014026806398753040, −10.51131399911384077869698335501, −9.562845726982192665503596507479, −9.088588987982817377872862066349, −7.71383149734483438350758336359, −6.34101877452598431385546924339, −5.02634211347520659503166412017, −4.14388478769693578212847889894, −3.03523582772307085497534197825,
0.63382424947647006242713611932, 3.09266965104391091818712969343, 4.25972730310862628328875707065, 5.47710736342166051376945518458, 7.15548360030558150758718569455, 7.68556126318465741316015865898, 8.931186802447378671827980162404, 9.532812416276354449331812656994, 11.42414143082954279569235176885, 12.14340421107266642983958845414