Properties

Label 2-15e2-225.106-c1-0-24
Degree $2$
Conductor $225$
Sign $0.999 + 0.0258i$
Analytic cond. $1.79663$
Root an. cond. $1.34038$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (2.43 + 0.516i)2-s + (0.810 − 1.53i)3-s + (3.81 + 1.69i)4-s + (−2.22 + 0.247i)5-s + (2.76 − 3.30i)6-s + (−0.644 + 1.11i)7-s + (4.36 + 3.17i)8-s + (−1.68 − 2.48i)9-s + (−5.52 − 0.546i)10-s + (0.502 + 0.106i)11-s + (5.68 − 4.45i)12-s + (−4.87 + 1.03i)13-s + (−2.14 + 2.38i)14-s + (−1.42 + 3.60i)15-s + (3.39 + 3.76i)16-s + (5.60 + 4.07i)17-s + ⋯
L(s)  = 1  + (1.71 + 0.365i)2-s + (0.467 − 0.883i)3-s + (1.90 + 0.848i)4-s + (−0.993 + 0.110i)5-s + (1.12 − 1.34i)6-s + (−0.243 + 0.421i)7-s + (1.54 + 1.12i)8-s + (−0.562 − 0.827i)9-s + (−1.74 − 0.172i)10-s + (0.151 + 0.0321i)11-s + (1.64 − 1.28i)12-s + (−1.35 + 0.287i)13-s + (−0.572 + 0.636i)14-s + (−0.367 + 0.930i)15-s + (0.847 + 0.941i)16-s + (1.35 + 0.987i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0258i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 + 0.0258i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(225\)    =    \(3^{2} \cdot 5^{2}\)
Sign: $0.999 + 0.0258i$
Analytic conductor: \(1.79663\)
Root analytic conductor: \(1.34038\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{225} (106, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 225,\ (\ :1/2),\ 0.999 + 0.0258i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.84799 - 0.0368520i\)
\(L(\frac12)\) \(\approx\) \(2.84799 - 0.0368520i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-0.810 + 1.53i)T \)
5 \( 1 + (2.22 - 0.247i)T \)
good2 \( 1 + (-2.43 - 0.516i)T + (1.82 + 0.813i)T^{2} \)
7 \( 1 + (0.644 - 1.11i)T + (-3.5 - 6.06i)T^{2} \)
11 \( 1 + (-0.502 - 0.106i)T + (10.0 + 4.47i)T^{2} \)
13 \( 1 + (4.87 - 1.03i)T + (11.8 - 5.28i)T^{2} \)
17 \( 1 + (-5.60 - 4.07i)T + (5.25 + 16.1i)T^{2} \)
19 \( 1 + (4.21 + 3.06i)T + (5.87 + 18.0i)T^{2} \)
23 \( 1 + (-2.78 + 3.09i)T + (-2.40 - 22.8i)T^{2} \)
29 \( 1 + (-0.724 - 6.89i)T + (-28.3 + 6.02i)T^{2} \)
31 \( 1 + (-0.160 + 1.52i)T + (-30.3 - 6.44i)T^{2} \)
37 \( 1 + (-2.27 + 6.99i)T + (-29.9 - 21.7i)T^{2} \)
41 \( 1 + (3.98 - 0.847i)T + (37.4 - 16.6i)T^{2} \)
43 \( 1 + (-2.08 + 3.60i)T + (-21.5 - 37.2i)T^{2} \)
47 \( 1 + (-0.841 - 8.00i)T + (-45.9 + 9.77i)T^{2} \)
53 \( 1 + (-2.21 + 1.60i)T + (16.3 - 50.4i)T^{2} \)
59 \( 1 + (-2.99 + 0.636i)T + (53.8 - 23.9i)T^{2} \)
61 \( 1 + (7.17 + 1.52i)T + (55.7 + 24.8i)T^{2} \)
67 \( 1 + (-0.0475 + 0.452i)T + (-65.5 - 13.9i)T^{2} \)
71 \( 1 + (-1.33 + 0.971i)T + (21.9 - 67.5i)T^{2} \)
73 \( 1 + (2.72 + 8.38i)T + (-59.0 + 42.9i)T^{2} \)
79 \( 1 + (-0.359 - 3.42i)T + (-77.2 + 16.4i)T^{2} \)
83 \( 1 + (-13.4 + 5.97i)T + (55.5 - 61.6i)T^{2} \)
89 \( 1 + (2.98 + 9.17i)T + (-72.0 + 52.3i)T^{2} \)
97 \( 1 + (0.842 + 8.01i)T + (-94.8 + 20.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.43003902304948699130454572461, −12.01939567263003417093220662269, −10.82726883567739543873980652179, −8.973106206397156242413778582474, −7.73694067930769154802988579671, −7.04650616225401601872798076732, −6.10276857816297798738335548767, −4.78238138020432126889965660853, −3.55852617082274613457225796128, −2.52413245299591692806872988974, 2.77967266079489783154697302563, 3.69207246515493831255320803557, 4.59531327440372357915460960210, 5.45121230527446554362001574851, 7.06752180575170395647437507830, 8.082058167993191850267601669546, 9.726255269727761613207964181992, 10.53532582866018368403945086351, 11.67372760538541490156310352368, 12.16469950374818930746153166182

Graph of the $Z$-function along the critical line