L(s) = 1 | + (2.43 + 0.516i)2-s + (0.810 − 1.53i)3-s + (3.81 + 1.69i)4-s + (−2.22 + 0.247i)5-s + (2.76 − 3.30i)6-s + (−0.644 + 1.11i)7-s + (4.36 + 3.17i)8-s + (−1.68 − 2.48i)9-s + (−5.52 − 0.546i)10-s + (0.502 + 0.106i)11-s + (5.68 − 4.45i)12-s + (−4.87 + 1.03i)13-s + (−2.14 + 2.38i)14-s + (−1.42 + 3.60i)15-s + (3.39 + 3.76i)16-s + (5.60 + 4.07i)17-s + ⋯ |
L(s) = 1 | + (1.71 + 0.365i)2-s + (0.467 − 0.883i)3-s + (1.90 + 0.848i)4-s + (−0.993 + 0.110i)5-s + (1.12 − 1.34i)6-s + (−0.243 + 0.421i)7-s + (1.54 + 1.12i)8-s + (−0.562 − 0.827i)9-s + (−1.74 − 0.172i)10-s + (0.151 + 0.0321i)11-s + (1.64 − 1.28i)12-s + (−1.35 + 0.287i)13-s + (−0.572 + 0.636i)14-s + (−0.367 + 0.930i)15-s + (0.847 + 0.941i)16-s + (1.35 + 0.987i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0258i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 + 0.0258i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.84799 - 0.0368520i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.84799 - 0.0368520i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.810 + 1.53i)T \) |
| 5 | \( 1 + (2.22 - 0.247i)T \) |
good | 2 | \( 1 + (-2.43 - 0.516i)T + (1.82 + 0.813i)T^{2} \) |
| 7 | \( 1 + (0.644 - 1.11i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-0.502 - 0.106i)T + (10.0 + 4.47i)T^{2} \) |
| 13 | \( 1 + (4.87 - 1.03i)T + (11.8 - 5.28i)T^{2} \) |
| 17 | \( 1 + (-5.60 - 4.07i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (4.21 + 3.06i)T + (5.87 + 18.0i)T^{2} \) |
| 23 | \( 1 + (-2.78 + 3.09i)T + (-2.40 - 22.8i)T^{2} \) |
| 29 | \( 1 + (-0.724 - 6.89i)T + (-28.3 + 6.02i)T^{2} \) |
| 31 | \( 1 + (-0.160 + 1.52i)T + (-30.3 - 6.44i)T^{2} \) |
| 37 | \( 1 + (-2.27 + 6.99i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (3.98 - 0.847i)T + (37.4 - 16.6i)T^{2} \) |
| 43 | \( 1 + (-2.08 + 3.60i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-0.841 - 8.00i)T + (-45.9 + 9.77i)T^{2} \) |
| 53 | \( 1 + (-2.21 + 1.60i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (-2.99 + 0.636i)T + (53.8 - 23.9i)T^{2} \) |
| 61 | \( 1 + (7.17 + 1.52i)T + (55.7 + 24.8i)T^{2} \) |
| 67 | \( 1 + (-0.0475 + 0.452i)T + (-65.5 - 13.9i)T^{2} \) |
| 71 | \( 1 + (-1.33 + 0.971i)T + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (2.72 + 8.38i)T + (-59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (-0.359 - 3.42i)T + (-77.2 + 16.4i)T^{2} \) |
| 83 | \( 1 + (-13.4 + 5.97i)T + (55.5 - 61.6i)T^{2} \) |
| 89 | \( 1 + (2.98 + 9.17i)T + (-72.0 + 52.3i)T^{2} \) |
| 97 | \( 1 + (0.842 + 8.01i)T + (-94.8 + 20.1i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.43003902304948699130454572461, −12.01939567263003417093220662269, −10.82726883567739543873980652179, −8.973106206397156242413778582474, −7.73694067930769154802988579671, −7.04650616225401601872798076732, −6.10276857816297798738335548767, −4.78238138020432126889965660853, −3.55852617082274613457225796128, −2.52413245299591692806872988974,
2.77967266079489783154697302563, 3.69207246515493831255320803557, 4.59531327440372357915460960210, 5.45121230527446554362001574851, 7.06752180575170395647437507830, 8.082058167993191850267601669546, 9.726255269727761613207964181992, 10.53532582866018368403945086351, 11.67372760538541490156310352368, 12.16469950374818930746153166182