L(s) = 1 | + (2.43 + 0.516i)2-s + (0.810 − 1.53i)3-s + (3.81 + 1.69i)4-s + (−2.22 + 0.247i)5-s + (2.76 − 3.30i)6-s + (−0.644 + 1.11i)7-s + (4.36 + 3.17i)8-s + (−1.68 − 2.48i)9-s + (−5.52 − 0.546i)10-s + (0.502 + 0.106i)11-s + (5.68 − 4.45i)12-s + (−4.87 + 1.03i)13-s + (−2.14 + 2.38i)14-s + (−1.42 + 3.60i)15-s + (3.39 + 3.76i)16-s + (5.60 + 4.07i)17-s + ⋯ |
L(s) = 1 | + (1.71 + 0.365i)2-s + (0.467 − 0.883i)3-s + (1.90 + 0.848i)4-s + (−0.993 + 0.110i)5-s + (1.12 − 1.34i)6-s + (−0.243 + 0.421i)7-s + (1.54 + 1.12i)8-s + (−0.562 − 0.827i)9-s + (−1.74 − 0.172i)10-s + (0.151 + 0.0321i)11-s + (1.64 − 1.28i)12-s + (−1.35 + 0.287i)13-s + (−0.572 + 0.636i)14-s + (−0.367 + 0.930i)15-s + (0.847 + 0.941i)16-s + (1.35 + 0.987i)17-s + ⋯ |
Λ(s)=(=(225s/2ΓC(s)L(s)(0.999+0.0258i)Λ(2−s)
Λ(s)=(=(225s/2ΓC(s+1/2)L(s)(0.999+0.0258i)Λ(1−s)
Degree: |
2 |
Conductor: |
225
= 32⋅52
|
Sign: |
0.999+0.0258i
|
Analytic conductor: |
1.79663 |
Root analytic conductor: |
1.34038 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ225(106,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 225, ( :1/2), 0.999+0.0258i)
|
Particular Values
L(1) |
≈ |
2.84799−0.0368520i |
L(21) |
≈ |
2.84799−0.0368520i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.810+1.53i)T |
| 5 | 1+(2.22−0.247i)T |
good | 2 | 1+(−2.43−0.516i)T+(1.82+0.813i)T2 |
| 7 | 1+(0.644−1.11i)T+(−3.5−6.06i)T2 |
| 11 | 1+(−0.502−0.106i)T+(10.0+4.47i)T2 |
| 13 | 1+(4.87−1.03i)T+(11.8−5.28i)T2 |
| 17 | 1+(−5.60−4.07i)T+(5.25+16.1i)T2 |
| 19 | 1+(4.21+3.06i)T+(5.87+18.0i)T2 |
| 23 | 1+(−2.78+3.09i)T+(−2.40−22.8i)T2 |
| 29 | 1+(−0.724−6.89i)T+(−28.3+6.02i)T2 |
| 31 | 1+(−0.160+1.52i)T+(−30.3−6.44i)T2 |
| 37 | 1+(−2.27+6.99i)T+(−29.9−21.7i)T2 |
| 41 | 1+(3.98−0.847i)T+(37.4−16.6i)T2 |
| 43 | 1+(−2.08+3.60i)T+(−21.5−37.2i)T2 |
| 47 | 1+(−0.841−8.00i)T+(−45.9+9.77i)T2 |
| 53 | 1+(−2.21+1.60i)T+(16.3−50.4i)T2 |
| 59 | 1+(−2.99+0.636i)T+(53.8−23.9i)T2 |
| 61 | 1+(7.17+1.52i)T+(55.7+24.8i)T2 |
| 67 | 1+(−0.0475+0.452i)T+(−65.5−13.9i)T2 |
| 71 | 1+(−1.33+0.971i)T+(21.9−67.5i)T2 |
| 73 | 1+(2.72+8.38i)T+(−59.0+42.9i)T2 |
| 79 | 1+(−0.359−3.42i)T+(−77.2+16.4i)T2 |
| 83 | 1+(−13.4+5.97i)T+(55.5−61.6i)T2 |
| 89 | 1+(2.98+9.17i)T+(−72.0+52.3i)T2 |
| 97 | 1+(0.842+8.01i)T+(−94.8+20.1i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.43003902304948699130454572461, −12.01939567263003417093220662269, −10.82726883567739543873980652179, −8.973106206397156242413778582474, −7.73694067930769154802988579671, −7.04650616225401601872798076732, −6.10276857816297798738335548767, −4.78238138020432126889965660853, −3.55852617082274613457225796128, −2.52413245299591692806872988974,
2.77967266079489783154697302563, 3.69207246515493831255320803557, 4.59531327440372357915460960210, 5.45121230527446554362001574851, 7.06752180575170395647437507830, 8.082058167993191850267601669546, 9.726255269727761613207964181992, 10.53532582866018368403945086351, 11.67372760538541490156310352368, 12.16469950374818930746153166182