L(s) = 1 | + (2.10 + 0.447i)2-s + (1.01 + 1.40i)3-s + (2.39 + 1.06i)4-s + (−1.89 − 1.19i)5-s + (1.50 + 3.40i)6-s + (−0.107 + 0.185i)7-s + (1.08 + 0.786i)8-s + (−0.937 + 2.84i)9-s + (−3.44 − 3.35i)10-s + (0.814 + 0.173i)11-s + (0.936 + 4.44i)12-s + (5.35 − 1.13i)13-s + (−0.308 + 0.343i)14-s + (−0.244 − 3.86i)15-s + (−1.58 − 1.75i)16-s + (−4.59 − 3.33i)17-s + ⋯ |
L(s) = 1 | + (1.48 + 0.316i)2-s + (0.586 + 0.810i)3-s + (1.19 + 0.533i)4-s + (−0.845 − 0.534i)5-s + (0.615 + 1.38i)6-s + (−0.0405 + 0.0702i)7-s + (0.382 + 0.278i)8-s + (−0.312 + 0.949i)9-s + (−1.08 − 1.06i)10-s + (0.245 + 0.0521i)11-s + (0.270 + 1.28i)12-s + (1.48 − 0.315i)13-s + (−0.0825 + 0.0916i)14-s + (−0.0630 − 0.998i)15-s + (−0.395 − 0.439i)16-s + (−1.11 − 0.809i)17-s + ⋯ |
Λ(s)=(=(225s/2ΓC(s)L(s)(0.658−0.752i)Λ(2−s)
Λ(s)=(=(225s/2ΓC(s+1/2)L(s)(0.658−0.752i)Λ(1−s)
Degree: |
2 |
Conductor: |
225
= 32⋅52
|
Sign: |
0.658−0.752i
|
Analytic conductor: |
1.79663 |
Root analytic conductor: |
1.34038 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ225(106,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 225, ( :1/2), 0.658−0.752i)
|
Particular Values
L(1) |
≈ |
2.37507+1.07798i |
L(21) |
≈ |
2.37507+1.07798i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−1.01−1.40i)T |
| 5 | 1+(1.89+1.19i)T |
good | 2 | 1+(−2.10−0.447i)T+(1.82+0.813i)T2 |
| 7 | 1+(0.107−0.185i)T+(−3.5−6.06i)T2 |
| 11 | 1+(−0.814−0.173i)T+(10.0+4.47i)T2 |
| 13 | 1+(−5.35+1.13i)T+(11.8−5.28i)T2 |
| 17 | 1+(4.59+3.33i)T+(5.25+16.1i)T2 |
| 19 | 1+(3.93+2.85i)T+(5.87+18.0i)T2 |
| 23 | 1+(0.383−0.425i)T+(−2.40−22.8i)T2 |
| 29 | 1+(−0.0969−0.922i)T+(−28.3+6.02i)T2 |
| 31 | 1+(0.107−1.02i)T+(−30.3−6.44i)T2 |
| 37 | 1+(2.04−6.28i)T+(−29.9−21.7i)T2 |
| 41 | 1+(−9.61+2.04i)T+(37.4−16.6i)T2 |
| 43 | 1+(−2.16+3.75i)T+(−21.5−37.2i)T2 |
| 47 | 1+(−0.270−2.57i)T+(−45.9+9.77i)T2 |
| 53 | 1+(7.56−5.49i)T+(16.3−50.4i)T2 |
| 59 | 1+(9.56−2.03i)T+(53.8−23.9i)T2 |
| 61 | 1+(−14.7−3.13i)T+(55.7+24.8i)T2 |
| 67 | 1+(1.12−10.7i)T+(−65.5−13.9i)T2 |
| 71 | 1+(2.48−1.80i)T+(21.9−67.5i)T2 |
| 73 | 1+(−1.33−4.10i)T+(−59.0+42.9i)T2 |
| 79 | 1+(0.869+8.27i)T+(−77.2+16.4i)T2 |
| 83 | 1+(3.17−1.41i)T+(55.5−61.6i)T2 |
| 89 | 1+(2.45+7.54i)T+(−72.0+52.3i)T2 |
| 97 | 1+(1.06+10.1i)T+(−94.8+20.1i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.71402306933542163897872989560, −11.49279258656865708259954226988, −10.86896695446160898456299052319, −9.175081435038938691423567644847, −8.515161188676313590200290410199, −7.16980610755022199789783312546, −5.87193113080980359132027466344, −4.62544007598209858971730743386, −4.07196259693106199393775863402, −2.92084570496842401514652746858,
2.13328443864075057126307409750, 3.58191266634263940093198417064, 4.14237762546584046497621935566, 6.12841978404699464040132397166, 6.62690861996511198893296476114, 8.044493081460646699804994742694, 8.889063979448834963214881902139, 10.84497675154908275935576738537, 11.37353846323086792481975100627, 12.44443457005168842791118750300