Properties

Label 2-15e2-225.106-c1-0-15
Degree 22
Conductor 225225
Sign 0.6580.752i0.658 - 0.752i
Analytic cond. 1.796631.79663
Root an. cond. 1.340381.34038
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (2.10 + 0.447i)2-s + (1.01 + 1.40i)3-s + (2.39 + 1.06i)4-s + (−1.89 − 1.19i)5-s + (1.50 + 3.40i)6-s + (−0.107 + 0.185i)7-s + (1.08 + 0.786i)8-s + (−0.937 + 2.84i)9-s + (−3.44 − 3.35i)10-s + (0.814 + 0.173i)11-s + (0.936 + 4.44i)12-s + (5.35 − 1.13i)13-s + (−0.308 + 0.343i)14-s + (−0.244 − 3.86i)15-s + (−1.58 − 1.75i)16-s + (−4.59 − 3.33i)17-s + ⋯
L(s)  = 1  + (1.48 + 0.316i)2-s + (0.586 + 0.810i)3-s + (1.19 + 0.533i)4-s + (−0.845 − 0.534i)5-s + (0.615 + 1.38i)6-s + (−0.0405 + 0.0702i)7-s + (0.382 + 0.278i)8-s + (−0.312 + 0.949i)9-s + (−1.08 − 1.06i)10-s + (0.245 + 0.0521i)11-s + (0.270 + 1.28i)12-s + (1.48 − 0.315i)13-s + (−0.0825 + 0.0916i)14-s + (−0.0630 − 0.998i)15-s + (−0.395 − 0.439i)16-s + (−1.11 − 0.809i)17-s + ⋯

Functional equation

Λ(s)=(225s/2ΓC(s)L(s)=((0.6580.752i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.658 - 0.752i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(225s/2ΓC(s+1/2)L(s)=((0.6580.752i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.658 - 0.752i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 225225    =    32523^{2} \cdot 5^{2}
Sign: 0.6580.752i0.658 - 0.752i
Analytic conductor: 1.796631.79663
Root analytic conductor: 1.340381.34038
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ225(106,)\chi_{225} (106, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 225, ( :1/2), 0.6580.752i)(2,\ 225,\ (\ :1/2),\ 0.658 - 0.752i)

Particular Values

L(1)L(1) \approx 2.37507+1.07798i2.37507 + 1.07798i
L(12)L(\frac12) \approx 2.37507+1.07798i2.37507 + 1.07798i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1+(1.011.40i)T 1 + (-1.01 - 1.40i)T
5 1+(1.89+1.19i)T 1 + (1.89 + 1.19i)T
good2 1+(2.100.447i)T+(1.82+0.813i)T2 1 + (-2.10 - 0.447i)T + (1.82 + 0.813i)T^{2}
7 1+(0.1070.185i)T+(3.56.06i)T2 1 + (0.107 - 0.185i)T + (-3.5 - 6.06i)T^{2}
11 1+(0.8140.173i)T+(10.0+4.47i)T2 1 + (-0.814 - 0.173i)T + (10.0 + 4.47i)T^{2}
13 1+(5.35+1.13i)T+(11.85.28i)T2 1 + (-5.35 + 1.13i)T + (11.8 - 5.28i)T^{2}
17 1+(4.59+3.33i)T+(5.25+16.1i)T2 1 + (4.59 + 3.33i)T + (5.25 + 16.1i)T^{2}
19 1+(3.93+2.85i)T+(5.87+18.0i)T2 1 + (3.93 + 2.85i)T + (5.87 + 18.0i)T^{2}
23 1+(0.3830.425i)T+(2.4022.8i)T2 1 + (0.383 - 0.425i)T + (-2.40 - 22.8i)T^{2}
29 1+(0.09690.922i)T+(28.3+6.02i)T2 1 + (-0.0969 - 0.922i)T + (-28.3 + 6.02i)T^{2}
31 1+(0.1071.02i)T+(30.36.44i)T2 1 + (0.107 - 1.02i)T + (-30.3 - 6.44i)T^{2}
37 1+(2.046.28i)T+(29.921.7i)T2 1 + (2.04 - 6.28i)T + (-29.9 - 21.7i)T^{2}
41 1+(9.61+2.04i)T+(37.416.6i)T2 1 + (-9.61 + 2.04i)T + (37.4 - 16.6i)T^{2}
43 1+(2.16+3.75i)T+(21.537.2i)T2 1 + (-2.16 + 3.75i)T + (-21.5 - 37.2i)T^{2}
47 1+(0.2702.57i)T+(45.9+9.77i)T2 1 + (-0.270 - 2.57i)T + (-45.9 + 9.77i)T^{2}
53 1+(7.565.49i)T+(16.350.4i)T2 1 + (7.56 - 5.49i)T + (16.3 - 50.4i)T^{2}
59 1+(9.562.03i)T+(53.823.9i)T2 1 + (9.56 - 2.03i)T + (53.8 - 23.9i)T^{2}
61 1+(14.73.13i)T+(55.7+24.8i)T2 1 + (-14.7 - 3.13i)T + (55.7 + 24.8i)T^{2}
67 1+(1.1210.7i)T+(65.513.9i)T2 1 + (1.12 - 10.7i)T + (-65.5 - 13.9i)T^{2}
71 1+(2.481.80i)T+(21.967.5i)T2 1 + (2.48 - 1.80i)T + (21.9 - 67.5i)T^{2}
73 1+(1.334.10i)T+(59.0+42.9i)T2 1 + (-1.33 - 4.10i)T + (-59.0 + 42.9i)T^{2}
79 1+(0.869+8.27i)T+(77.2+16.4i)T2 1 + (0.869 + 8.27i)T + (-77.2 + 16.4i)T^{2}
83 1+(3.171.41i)T+(55.561.6i)T2 1 + (3.17 - 1.41i)T + (55.5 - 61.6i)T^{2}
89 1+(2.45+7.54i)T+(72.0+52.3i)T2 1 + (2.45 + 7.54i)T + (-72.0 + 52.3i)T^{2}
97 1+(1.06+10.1i)T+(94.8+20.1i)T2 1 + (1.06 + 10.1i)T + (-94.8 + 20.1i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−12.71402306933542163897872989560, −11.49279258656865708259954226988, −10.86896695446160898456299052319, −9.175081435038938691423567644847, −8.515161188676313590200290410199, −7.16980610755022199789783312546, −5.87193113080980359132027466344, −4.62544007598209858971730743386, −4.07196259693106199393775863402, −2.92084570496842401514652746858, 2.13328443864075057126307409750, 3.58191266634263940093198417064, 4.14237762546584046497621935566, 6.12841978404699464040132397166, 6.62690861996511198893296476114, 8.044493081460646699804994742694, 8.889063979448834963214881902139, 10.84497675154908275935576738537, 11.37353846323086792481975100627, 12.44443457005168842791118750300

Graph of the ZZ-function along the critical line