L(s) = 1 | + (1.91 + 0.406i)2-s + (−0.0970 + 1.72i)3-s + (1.67 + 0.744i)4-s + (2.20 − 0.343i)5-s + (−0.889 + 3.27i)6-s + (0.690 − 1.19i)7-s + (−0.268 − 0.194i)8-s + (−2.98 − 0.335i)9-s + (4.36 + 0.240i)10-s + (−2.41 − 0.513i)11-s + (−1.44 + 2.81i)12-s + (−3.14 + 0.668i)13-s + (1.80 − 2.00i)14-s + (0.380 + 3.85i)15-s + (−2.88 − 3.20i)16-s + (3.02 + 2.19i)17-s + ⋯ |
L(s) = 1 | + (1.35 + 0.287i)2-s + (−0.0560 + 0.998i)3-s + (0.836 + 0.372i)4-s + (0.988 − 0.153i)5-s + (−0.363 + 1.33i)6-s + (0.260 − 0.451i)7-s + (−0.0948 − 0.0689i)8-s + (−0.993 − 0.111i)9-s + (1.38 + 0.0761i)10-s + (−0.728 − 0.154i)11-s + (−0.418 + 0.813i)12-s + (−0.872 + 0.185i)13-s + (0.483 − 0.536i)14-s + (0.0981 + 0.995i)15-s + (−0.721 − 0.800i)16-s + (0.734 + 0.533i)17-s + ⋯ |
Λ(s)=(=(225s/2ΓC(s)L(s)(0.603−0.797i)Λ(2−s)
Λ(s)=(=(225s/2ΓC(s+1/2)L(s)(0.603−0.797i)Λ(1−s)
Degree: |
2 |
Conductor: |
225
= 32⋅52
|
Sign: |
0.603−0.797i
|
Analytic conductor: |
1.79663 |
Root analytic conductor: |
1.34038 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ225(106,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 225, ( :1/2), 0.603−0.797i)
|
Particular Values
L(1) |
≈ |
2.14643+1.06709i |
L(21) |
≈ |
2.14643+1.06709i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.0970−1.72i)T |
| 5 | 1+(−2.20+0.343i)T |
good | 2 | 1+(−1.91−0.406i)T+(1.82+0.813i)T2 |
| 7 | 1+(−0.690+1.19i)T+(−3.5−6.06i)T2 |
| 11 | 1+(2.41+0.513i)T+(10.0+4.47i)T2 |
| 13 | 1+(3.14−0.668i)T+(11.8−5.28i)T2 |
| 17 | 1+(−3.02−2.19i)T+(5.25+16.1i)T2 |
| 19 | 1+(−0.234−0.170i)T+(5.87+18.0i)T2 |
| 23 | 1+(−0.389+0.432i)T+(−2.40−22.8i)T2 |
| 29 | 1+(0.389+3.71i)T+(−28.3+6.02i)T2 |
| 31 | 1+(0.895−8.51i)T+(−30.3−6.44i)T2 |
| 37 | 1+(−2.37+7.31i)T+(−29.9−21.7i)T2 |
| 41 | 1+(6.21−1.32i)T+(37.4−16.6i)T2 |
| 43 | 1+(3.20−5.54i)T+(−21.5−37.2i)T2 |
| 47 | 1+(0.750+7.14i)T+(−45.9+9.77i)T2 |
| 53 | 1+(−6.69+4.86i)T+(16.3−50.4i)T2 |
| 59 | 1+(−1.90+0.404i)T+(53.8−23.9i)T2 |
| 61 | 1+(−12.8−2.72i)T+(55.7+24.8i)T2 |
| 67 | 1+(1.05−10.0i)T+(−65.5−13.9i)T2 |
| 71 | 1+(10.4−7.59i)T+(21.9−67.5i)T2 |
| 73 | 1+(−1.44−4.43i)T+(−59.0+42.9i)T2 |
| 79 | 1+(−1.66−15.8i)T+(−77.2+16.4i)T2 |
| 83 | 1+(−0.184+0.0821i)T+(55.5−61.6i)T2 |
| 89 | 1+(3.30+10.1i)T+(−72.0+52.3i)T2 |
| 97 | 1+(1.15+10.9i)T+(−94.8+20.1i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.65149221140935411820033726797, −11.58864033738547427254897120465, −10.35704142006206804333987796276, −9.775509690257185270976570003058, −8.518368201964769148622414886118, −6.95241528947918410697528413127, −5.64096951527383129210664694203, −5.15024958358352213503980170990, −4.05111032356920334331507121341, −2.73000832022930014587681479074,
2.11550674966413175735722515466, 2.99189197328607221152975437309, 5.07078119251077265574879878628, 5.58786806444977730864720872370, 6.69721149062030205827385064698, 7.88275020311444815097754782723, 9.196585332403709450823209442374, 10.45877441917974704725006984354, 11.68552956458789431394096923732, 12.26748937941340603770096168566