L(s) = 1 | + (0.199 + 0.0424i)2-s + (−1.41 + 0.998i)3-s + (−1.78 − 0.796i)4-s + (2.05 − 0.891i)5-s + (−0.325 + 0.139i)6-s + (0.530 − 0.918i)7-s + (−0.654 − 0.475i)8-s + (1.00 − 2.82i)9-s + (0.447 − 0.0909i)10-s + (5.73 + 1.21i)11-s + (3.32 − 0.658i)12-s + (3.20 − 0.680i)13-s + (0.144 − 0.160i)14-s + (−2.01 + 3.30i)15-s + (2.51 + 2.78i)16-s + (−5.93 − 4.31i)17-s + ⋯ |
L(s) = 1 | + (0.141 + 0.0300i)2-s + (−0.817 + 0.576i)3-s + (−0.894 − 0.398i)4-s + (0.917 − 0.398i)5-s + (−0.132 + 0.0568i)6-s + (0.200 − 0.346i)7-s + (−0.231 − 0.168i)8-s + (0.335 − 0.941i)9-s + (0.141 − 0.0287i)10-s + (1.72 + 0.367i)11-s + (0.960 − 0.190i)12-s + (0.887 − 0.188i)13-s + (0.0387 − 0.0430i)14-s + (−0.519 + 0.854i)15-s + (0.627 + 0.696i)16-s + (−1.43 − 1.04i)17-s + ⋯ |
Λ(s)=(=(225s/2ΓC(s)L(s)(0.933+0.358i)Λ(2−s)
Λ(s)=(=(225s/2ΓC(s+1/2)L(s)(0.933+0.358i)Λ(1−s)
Degree: |
2 |
Conductor: |
225
= 32⋅52
|
Sign: |
0.933+0.358i
|
Analytic conductor: |
1.79663 |
Root analytic conductor: |
1.34038 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ225(106,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 225, ( :1/2), 0.933+0.358i)
|
Particular Values
L(1) |
≈ |
1.03545−0.192185i |
L(21) |
≈ |
1.03545−0.192185i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(1.41−0.998i)T |
| 5 | 1+(−2.05+0.891i)T |
good | 2 | 1+(−0.199−0.0424i)T+(1.82+0.813i)T2 |
| 7 | 1+(−0.530+0.918i)T+(−3.5−6.06i)T2 |
| 11 | 1+(−5.73−1.21i)T+(10.0+4.47i)T2 |
| 13 | 1+(−3.20+0.680i)T+(11.8−5.28i)T2 |
| 17 | 1+(5.93+4.31i)T+(5.25+16.1i)T2 |
| 19 | 1+(−2.26−1.64i)T+(5.87+18.0i)T2 |
| 23 | 1+(0.406−0.450i)T+(−2.40−22.8i)T2 |
| 29 | 1+(0.865+8.23i)T+(−28.3+6.02i)T2 |
| 31 | 1+(−0.439+4.18i)T+(−30.3−6.44i)T2 |
| 37 | 1+(3.21−9.88i)T+(−29.9−21.7i)T2 |
| 41 | 1+(6.31−1.34i)T+(37.4−16.6i)T2 |
| 43 | 1+(−1.32+2.29i)T+(−21.5−37.2i)T2 |
| 47 | 1+(−0.0694−0.660i)T+(−45.9+9.77i)T2 |
| 53 | 1+(5.03−3.65i)T+(16.3−50.4i)T2 |
| 59 | 1+(−0.348+0.0741i)T+(53.8−23.9i)T2 |
| 61 | 1+(−6.89−1.46i)T+(55.7+24.8i)T2 |
| 67 | 1+(1.16−11.0i)T+(−65.5−13.9i)T2 |
| 71 | 1+(3.31−2.40i)T+(21.9−67.5i)T2 |
| 73 | 1+(2.32+7.14i)T+(−59.0+42.9i)T2 |
| 79 | 1+(−1.19−11.3i)T+(−77.2+16.4i)T2 |
| 83 | 1+(−5.25+2.33i)T+(55.5−61.6i)T2 |
| 89 | 1+(−1.63−5.04i)T+(−72.0+52.3i)T2 |
| 97 | 1+(0.0258+0.245i)T+(−94.8+20.1i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.07421288013796355204356186567, −11.25247690356011003259446749132, −10.01765175357027091164723209685, −9.464914984893710365086454288646, −8.689645605416081263959605222675, −6.65492383807812902070562642949, −5.90718968225677281331413206804, −4.74812401257303935191640970287, −3.99955750102440715885780761272, −1.17042111699141903886877279137,
1.64042683439239307954911923750, 3.72160717456142404466326548263, 5.10926966261467730272367024032, 6.18737831528035822995317230309, 6.91647678038246073238055105305, 8.644539389579292454496463711336, 9.130541393668006783736090193280, 10.59594575682720633428241134936, 11.40124971762307871509961137115, 12.39805383425495749833660870557