Properties

Label 2-15e2-225.106-c1-0-10
Degree $2$
Conductor $225$
Sign $0.999 + 0.0413i$
Analytic cond. $1.79663$
Root an. cond. $1.34038$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.05 − 0.224i)2-s + (1.71 − 0.259i)3-s + (−0.766 − 0.341i)4-s + (−1.13 + 1.92i)5-s + (−1.86 − 0.110i)6-s + (0.316 − 0.548i)7-s + (2.47 + 1.79i)8-s + (2.86 − 0.888i)9-s + (1.63 − 1.77i)10-s + (5.10 + 1.08i)11-s + (−1.40 − 0.385i)12-s + (3.72 − 0.791i)13-s + (−0.456 + 0.506i)14-s + (−1.44 + 3.59i)15-s + (−1.08 − 1.20i)16-s + (−0.365 − 0.265i)17-s + ⋯
L(s)  = 1  + (−0.745 − 0.158i)2-s + (0.988 − 0.149i)3-s + (−0.383 − 0.170i)4-s + (−0.509 + 0.860i)5-s + (−0.760 − 0.0449i)6-s + (0.119 − 0.207i)7-s + (0.874 + 0.635i)8-s + (0.955 − 0.296i)9-s + (0.515 − 0.560i)10-s + (1.53 + 0.327i)11-s + (−0.404 − 0.111i)12-s + (1.03 − 0.219i)13-s + (−0.121 + 0.135i)14-s + (−0.374 + 0.927i)15-s + (−0.270 − 0.300i)16-s + (−0.0886 − 0.0643i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0413i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 + 0.0413i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(225\)    =    \(3^{2} \cdot 5^{2}\)
Sign: $0.999 + 0.0413i$
Analytic conductor: \(1.79663\)
Root analytic conductor: \(1.34038\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{225} (106, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 225,\ (\ :1/2),\ 0.999 + 0.0413i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.06294 - 0.0219952i\)
\(L(\frac12)\) \(\approx\) \(1.06294 - 0.0219952i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-1.71 + 0.259i)T \)
5 \( 1 + (1.13 - 1.92i)T \)
good2 \( 1 + (1.05 + 0.224i)T + (1.82 + 0.813i)T^{2} \)
7 \( 1 + (-0.316 + 0.548i)T + (-3.5 - 6.06i)T^{2} \)
11 \( 1 + (-5.10 - 1.08i)T + (10.0 + 4.47i)T^{2} \)
13 \( 1 + (-3.72 + 0.791i)T + (11.8 - 5.28i)T^{2} \)
17 \( 1 + (0.365 + 0.265i)T + (5.25 + 16.1i)T^{2} \)
19 \( 1 + (3.97 + 2.88i)T + (5.87 + 18.0i)T^{2} \)
23 \( 1 + (0.0686 - 0.0762i)T + (-2.40 - 22.8i)T^{2} \)
29 \( 1 + (-1.04 - 9.98i)T + (-28.3 + 6.02i)T^{2} \)
31 \( 1 + (0.422 - 4.01i)T + (-30.3 - 6.44i)T^{2} \)
37 \( 1 + (-0.0800 + 0.246i)T + (-29.9 - 21.7i)T^{2} \)
41 \( 1 + (7.65 - 1.62i)T + (37.4 - 16.6i)T^{2} \)
43 \( 1 + (-3.68 + 6.38i)T + (-21.5 - 37.2i)T^{2} \)
47 \( 1 + (1.10 + 10.5i)T + (-45.9 + 9.77i)T^{2} \)
53 \( 1 + (4.56 - 3.31i)T + (16.3 - 50.4i)T^{2} \)
59 \( 1 + (7.00 - 1.48i)T + (53.8 - 23.9i)T^{2} \)
61 \( 1 + (4.50 + 0.958i)T + (55.7 + 24.8i)T^{2} \)
67 \( 1 + (0.364 - 3.46i)T + (-65.5 - 13.9i)T^{2} \)
71 \( 1 + (3.47 - 2.52i)T + (21.9 - 67.5i)T^{2} \)
73 \( 1 + (4.75 + 14.6i)T + (-59.0 + 42.9i)T^{2} \)
79 \( 1 + (0.142 + 1.35i)T + (-77.2 + 16.4i)T^{2} \)
83 \( 1 + (-1.95 + 0.870i)T + (55.5 - 61.6i)T^{2} \)
89 \( 1 + (5.42 + 16.7i)T + (-72.0 + 52.3i)T^{2} \)
97 \( 1 + (-0.637 - 6.06i)T + (-94.8 + 20.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.15441937630736051034893804364, −10.91961526474529891791269219797, −10.28859539592173154442397949998, −8.985773024326805921310094533339, −8.655313692829266957318264885457, −7.39303263726417167351484478073, −6.56959215502592850525230007684, −4.43840697375891569258312741273, −3.41353622791173039220012040174, −1.57177209277507770569990350041, 1.41366533242909221419533272451, 3.81885573122957050813747212555, 4.34876772698173677475504821687, 6.35079011657511941187167871416, 7.82949343407203679442433502010, 8.443632295778827708962925828808, 9.082818217091756030860182598716, 9.807581335527809246580081166054, 11.22703283085274450903246084890, 12.35282211864527302425903378522

Graph of the $Z$-function along the critical line