L(s) = 1 | + (−1.05 − 0.224i)2-s + (1.71 − 0.259i)3-s + (−0.766 − 0.341i)4-s + (−1.13 + 1.92i)5-s + (−1.86 − 0.110i)6-s + (0.316 − 0.548i)7-s + (2.47 + 1.79i)8-s + (2.86 − 0.888i)9-s + (1.63 − 1.77i)10-s + (5.10 + 1.08i)11-s + (−1.40 − 0.385i)12-s + (3.72 − 0.791i)13-s + (−0.456 + 0.506i)14-s + (−1.44 + 3.59i)15-s + (−1.08 − 1.20i)16-s + (−0.365 − 0.265i)17-s + ⋯ |
L(s) = 1 | + (−0.745 − 0.158i)2-s + (0.988 − 0.149i)3-s + (−0.383 − 0.170i)4-s + (−0.509 + 0.860i)5-s + (−0.760 − 0.0449i)6-s + (0.119 − 0.207i)7-s + (0.874 + 0.635i)8-s + (0.955 − 0.296i)9-s + (0.515 − 0.560i)10-s + (1.53 + 0.327i)11-s + (−0.404 − 0.111i)12-s + (1.03 − 0.219i)13-s + (−0.121 + 0.135i)14-s + (−0.374 + 0.927i)15-s + (−0.270 − 0.300i)16-s + (−0.0886 − 0.0643i)17-s + ⋯ |
Λ(s)=(=(225s/2ΓC(s)L(s)(0.999+0.0413i)Λ(2−s)
Λ(s)=(=(225s/2ΓC(s+1/2)L(s)(0.999+0.0413i)Λ(1−s)
Degree: |
2 |
Conductor: |
225
= 32⋅52
|
Sign: |
0.999+0.0413i
|
Analytic conductor: |
1.79663 |
Root analytic conductor: |
1.34038 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ225(106,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 225, ( :1/2), 0.999+0.0413i)
|
Particular Values
L(1) |
≈ |
1.06294−0.0219952i |
L(21) |
≈ |
1.06294−0.0219952i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−1.71+0.259i)T |
| 5 | 1+(1.13−1.92i)T |
good | 2 | 1+(1.05+0.224i)T+(1.82+0.813i)T2 |
| 7 | 1+(−0.316+0.548i)T+(−3.5−6.06i)T2 |
| 11 | 1+(−5.10−1.08i)T+(10.0+4.47i)T2 |
| 13 | 1+(−3.72+0.791i)T+(11.8−5.28i)T2 |
| 17 | 1+(0.365+0.265i)T+(5.25+16.1i)T2 |
| 19 | 1+(3.97+2.88i)T+(5.87+18.0i)T2 |
| 23 | 1+(0.0686−0.0762i)T+(−2.40−22.8i)T2 |
| 29 | 1+(−1.04−9.98i)T+(−28.3+6.02i)T2 |
| 31 | 1+(0.422−4.01i)T+(−30.3−6.44i)T2 |
| 37 | 1+(−0.0800+0.246i)T+(−29.9−21.7i)T2 |
| 41 | 1+(7.65−1.62i)T+(37.4−16.6i)T2 |
| 43 | 1+(−3.68+6.38i)T+(−21.5−37.2i)T2 |
| 47 | 1+(1.10+10.5i)T+(−45.9+9.77i)T2 |
| 53 | 1+(4.56−3.31i)T+(16.3−50.4i)T2 |
| 59 | 1+(7.00−1.48i)T+(53.8−23.9i)T2 |
| 61 | 1+(4.50+0.958i)T+(55.7+24.8i)T2 |
| 67 | 1+(0.364−3.46i)T+(−65.5−13.9i)T2 |
| 71 | 1+(3.47−2.52i)T+(21.9−67.5i)T2 |
| 73 | 1+(4.75+14.6i)T+(−59.0+42.9i)T2 |
| 79 | 1+(0.142+1.35i)T+(−77.2+16.4i)T2 |
| 83 | 1+(−1.95+0.870i)T+(55.5−61.6i)T2 |
| 89 | 1+(5.42+16.7i)T+(−72.0+52.3i)T2 |
| 97 | 1+(−0.637−6.06i)T+(−94.8+20.1i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.15441937630736051034893804364, −10.91961526474529891791269219797, −10.28859539592173154442397949998, −8.985773024326805921310094533339, −8.655313692829266957318264885457, −7.39303263726417167351484478073, −6.56959215502592850525230007684, −4.43840697375891569258312741273, −3.41353622791173039220012040174, −1.57177209277507770569990350041,
1.41366533242909221419533272451, 3.81885573122957050813747212555, 4.34876772698173677475504821687, 6.35079011657511941187167871416, 7.82949343407203679442433502010, 8.443632295778827708962925828808, 9.082818217091756030860182598716, 9.807581335527809246580081166054, 11.22703283085274450903246084890, 12.35282211864527302425903378522