L(s) = 1 | + 0.732·5-s + 2.36·7-s + (−3.23 + 0.732i)11-s − 2.36i·13-s − 6.46i·17-s + 6.46·19-s − 4.73i·23-s − 4.46·25-s + 2i·31-s + 1.73·35-s + 7.46·37-s − 4.73i·41-s + 6.46·43-s + 6.19i·47-s − 1.39·49-s + ⋯ |
L(s) = 1 | + 0.327·5-s + 0.895·7-s + (−0.975 + 0.220i)11-s − 0.656i·13-s − 1.56i·17-s + 1.48·19-s − 0.986i·23-s − 0.892·25-s + 0.359i·31-s + 0.293·35-s + 1.22·37-s − 0.739i·41-s + 0.986·43-s + 0.903i·47-s − 0.198·49-s + ⋯ |
Λ(s)=(=(1584s/2ΓC(s)L(s)(0.678+0.734i)Λ(2−s)
Λ(s)=(=(1584s/2ΓC(s+1/2)L(s)(0.678+0.734i)Λ(1−s)
Degree: |
2 |
Conductor: |
1584
= 24⋅32⋅11
|
Sign: |
0.678+0.734i
|
Analytic conductor: |
12.6483 |
Root analytic conductor: |
3.55644 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1584(703,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1584, ( :1/2), 0.678+0.734i)
|
Particular Values
L(1) |
≈ |
1.857796067 |
L(21) |
≈ |
1.857796067 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 11 | 1+(3.23−0.732i)T |
good | 5 | 1−0.732T+5T2 |
| 7 | 1−2.36T+7T2 |
| 13 | 1+2.36iT−13T2 |
| 17 | 1+6.46iT−17T2 |
| 19 | 1−6.46T+19T2 |
| 23 | 1+4.73iT−23T2 |
| 29 | 1−29T2 |
| 31 | 1−2iT−31T2 |
| 37 | 1−7.46T+37T2 |
| 41 | 1+4.73iT−41T2 |
| 43 | 1−6.46T+43T2 |
| 47 | 1−6.19iT−47T2 |
| 53 | 1−7.26T+53T2 |
| 59 | 1+2.53iT−59T2 |
| 61 | 1+15.3iT−61T2 |
| 67 | 1−10.3iT−67T2 |
| 71 | 1−7.26iT−71T2 |
| 73 | 1+4.73iT−73T2 |
| 79 | 1+2.36T+79T2 |
| 83 | 1−4.73T+83T2 |
| 89 | 1+10.3T+89T2 |
| 97 | 1+1.46T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.478598673420947694368964785473, −8.396663238338436338061053641816, −7.69036189641843372576028560922, −7.15413297351646408093907666918, −5.82504162679511704520928160779, −5.20665587758625698825001106260, −4.50000055807521621915864640427, −3.07137461336176476959472328365, −2.26593259916043741528726448722, −0.788870169905196896422651729223,
1.33950757465119075105545555396, 2.33092366736308160613157996120, 3.59341633309367026680212410662, 4.55750414418656188164161851743, 5.54171515033721502476657193420, 6.03515530719143611420031591447, 7.38141100102109596065697467907, 7.85863156582412435419468724888, 8.659197328860345829194765808953, 9.603087128908774590497969888194