Properties

Label 2-1584-44.43-c1-0-12
Degree $2$
Conductor $1584$
Sign $0.678 - 0.734i$
Analytic cond. $12.6483$
Root an. cond. $3.55644$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.732·5-s + 2.36·7-s + (−3.23 − 0.732i)11-s + 2.36i·13-s + 6.46i·17-s + 6.46·19-s + 4.73i·23-s − 4.46·25-s − 2i·31-s + 1.73·35-s + 7.46·37-s + 4.73i·41-s + 6.46·43-s − 6.19i·47-s − 1.39·49-s + ⋯
L(s)  = 1  + 0.327·5-s + 0.895·7-s + (−0.975 − 0.220i)11-s + 0.656i·13-s + 1.56i·17-s + 1.48·19-s + 0.986i·23-s − 0.892·25-s − 0.359i·31-s + 0.293·35-s + 1.22·37-s + 0.739i·41-s + 0.986·43-s − 0.903i·47-s − 0.198·49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1584 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.678 - 0.734i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1584 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.678 - 0.734i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1584\)    =    \(2^{4} \cdot 3^{2} \cdot 11\)
Sign: $0.678 - 0.734i$
Analytic conductor: \(12.6483\)
Root analytic conductor: \(3.55644\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1584} (703, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1584,\ (\ :1/2),\ 0.678 - 0.734i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.857796067\)
\(L(\frac12)\) \(\approx\) \(1.857796067\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 + (3.23 + 0.732i)T \)
good5 \( 1 - 0.732T + 5T^{2} \)
7 \( 1 - 2.36T + 7T^{2} \)
13 \( 1 - 2.36iT - 13T^{2} \)
17 \( 1 - 6.46iT - 17T^{2} \)
19 \( 1 - 6.46T + 19T^{2} \)
23 \( 1 - 4.73iT - 23T^{2} \)
29 \( 1 - 29T^{2} \)
31 \( 1 + 2iT - 31T^{2} \)
37 \( 1 - 7.46T + 37T^{2} \)
41 \( 1 - 4.73iT - 41T^{2} \)
43 \( 1 - 6.46T + 43T^{2} \)
47 \( 1 + 6.19iT - 47T^{2} \)
53 \( 1 - 7.26T + 53T^{2} \)
59 \( 1 - 2.53iT - 59T^{2} \)
61 \( 1 - 15.3iT - 61T^{2} \)
67 \( 1 + 10.3iT - 67T^{2} \)
71 \( 1 + 7.26iT - 71T^{2} \)
73 \( 1 - 4.73iT - 73T^{2} \)
79 \( 1 + 2.36T + 79T^{2} \)
83 \( 1 - 4.73T + 83T^{2} \)
89 \( 1 + 10.3T + 89T^{2} \)
97 \( 1 + 1.46T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.603087128908774590497969888194, −8.659197328860345829194765808953, −7.85863156582412435419468724888, −7.38141100102109596065697467907, −6.03515530719143611420031591447, −5.54171515033721502476657193420, −4.55750414418656188164161851743, −3.59341633309367026680212410662, −2.33092366736308160613157996120, −1.33950757465119075105545555396, 0.788870169905196896422651729223, 2.26593259916043741528726448722, 3.07137461336176476959472328365, 4.50000055807521621915864640427, 5.20665587758625698825001106260, 5.82504162679511704520928160779, 7.15413297351646408093907666918, 7.69036189641843372576028560922, 8.396663238338436338061053641816, 9.478598673420947694368964785473

Graph of the $Z$-function along the critical line