L(s) = 1 | − 2.73·5-s − 5.13·7-s + (−1.88 + 2.73i)11-s − 5.13i·13-s + 3.76i·17-s + 3.76·19-s + 1.26i·23-s + 2.46·25-s − 2i·31-s + 14.0·35-s + 0.535·37-s − 10.2i·41-s + 3.76·43-s + 4.19i·47-s + 19.3·49-s + ⋯ |
L(s) = 1 | − 1.22·5-s − 1.94·7-s + (−0.566 + 0.823i)11-s − 1.42i·13-s + 0.912i·17-s + 0.862·19-s + 0.264i·23-s + 0.492·25-s − 0.359i·31-s + 2.37·35-s + 0.0881·37-s − 1.60i·41-s + 0.573·43-s + 0.612i·47-s + 2.77·49-s + ⋯ |
Λ(s)=(=(1584s/2ΓC(s)L(s)(0.996+0.0791i)Λ(2−s)
Λ(s)=(=(1584s/2ΓC(s+1/2)L(s)(0.996+0.0791i)Λ(1−s)
Degree: |
2 |
Conductor: |
1584
= 24⋅32⋅11
|
Sign: |
0.996+0.0791i
|
Analytic conductor: |
12.6483 |
Root analytic conductor: |
3.55644 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1584(703,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1584, ( :1/2), 0.996+0.0791i)
|
Particular Values
L(1) |
≈ |
0.6915463662 |
L(21) |
≈ |
0.6915463662 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 11 | 1+(1.88−2.73i)T |
good | 5 | 1+2.73T+5T2 |
| 7 | 1+5.13T+7T2 |
| 13 | 1+5.13iT−13T2 |
| 17 | 1−3.76iT−17T2 |
| 19 | 1−3.76T+19T2 |
| 23 | 1−1.26iT−23T2 |
| 29 | 1−29T2 |
| 31 | 1+2iT−31T2 |
| 37 | 1−0.535T+37T2 |
| 41 | 1+10.2iT−41T2 |
| 43 | 1−3.76T+43T2 |
| 47 | 1−4.19iT−47T2 |
| 53 | 1−10.7T+53T2 |
| 59 | 1−9.46iT−59T2 |
| 61 | 1−2.38iT−61T2 |
| 67 | 1−10.3iT−67T2 |
| 71 | 1+10.7iT−71T2 |
| 73 | 1+10.2iT−73T2 |
| 79 | 1−5.13T+79T2 |
| 83 | 1+10.2T+83T2 |
| 89 | 1−10.3T+89T2 |
| 97 | 1−5.46T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.475118209314111554973841736861, −8.598277221303195924618230929176, −7.53385070333210197779980223463, −7.32489936962704426752280907022, −6.13463901697323520316804110426, −5.42157485564327696847866596917, −4.08522439675853833574654485847, −3.45603162113302516051925250032, −2.63733891581698118175310761670, −0.53541363683619127872032832978,
0.57339477833496142559792334339, 2.69976076683283500719891765888, 3.42278131420198372643253919985, 4.16481302312180365604462608312, 5.32932665255692698316246617778, 6.41957272127299413311823283827, 6.95885846283835998094679823177, 7.75147351997956101716184493330, 8.725617524795713462793757011267, 9.426473281374356046142004029780