Properties

Label 2-1584-44.43-c1-0-8
Degree $2$
Conductor $1584$
Sign $0.996 - 0.0791i$
Analytic cond. $12.6483$
Root an. cond. $3.55644$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.73·5-s − 5.13·7-s + (−1.88 − 2.73i)11-s + 5.13i·13-s − 3.76i·17-s + 3.76·19-s − 1.26i·23-s + 2.46·25-s + 2i·31-s + 14.0·35-s + 0.535·37-s + 10.2i·41-s + 3.76·43-s − 4.19i·47-s + 19.3·49-s + ⋯
L(s)  = 1  − 1.22·5-s − 1.94·7-s + (−0.566 − 0.823i)11-s + 1.42i·13-s − 0.912i·17-s + 0.862·19-s − 0.264i·23-s + 0.492·25-s + 0.359i·31-s + 2.37·35-s + 0.0881·37-s + 1.60i·41-s + 0.573·43-s − 0.612i·47-s + 2.77·49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1584 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.996 - 0.0791i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1584 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.996 - 0.0791i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1584\)    =    \(2^{4} \cdot 3^{2} \cdot 11\)
Sign: $0.996 - 0.0791i$
Analytic conductor: \(12.6483\)
Root analytic conductor: \(3.55644\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1584} (703, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1584,\ (\ :1/2),\ 0.996 - 0.0791i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6915463662\)
\(L(\frac12)\) \(\approx\) \(0.6915463662\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 + (1.88 + 2.73i)T \)
good5 \( 1 + 2.73T + 5T^{2} \)
7 \( 1 + 5.13T + 7T^{2} \)
13 \( 1 - 5.13iT - 13T^{2} \)
17 \( 1 + 3.76iT - 17T^{2} \)
19 \( 1 - 3.76T + 19T^{2} \)
23 \( 1 + 1.26iT - 23T^{2} \)
29 \( 1 - 29T^{2} \)
31 \( 1 - 2iT - 31T^{2} \)
37 \( 1 - 0.535T + 37T^{2} \)
41 \( 1 - 10.2iT - 41T^{2} \)
43 \( 1 - 3.76T + 43T^{2} \)
47 \( 1 + 4.19iT - 47T^{2} \)
53 \( 1 - 10.7T + 53T^{2} \)
59 \( 1 + 9.46iT - 59T^{2} \)
61 \( 1 + 2.38iT - 61T^{2} \)
67 \( 1 + 10.3iT - 67T^{2} \)
71 \( 1 - 10.7iT - 71T^{2} \)
73 \( 1 - 10.2iT - 73T^{2} \)
79 \( 1 - 5.13T + 79T^{2} \)
83 \( 1 + 10.2T + 83T^{2} \)
89 \( 1 - 10.3T + 89T^{2} \)
97 \( 1 - 5.46T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.426473281374356046142004029780, −8.725617524795713462793757011267, −7.75147351997956101716184493330, −6.95885846283835998094679823177, −6.41957272127299413311823283827, −5.32932665255692698316246617778, −4.16481302312180365604462608312, −3.42278131420198372643253919985, −2.69976076683283500719891765888, −0.57339477833496142559792334339, 0.53541363683619127872032832978, 2.63733891581698118175310761670, 3.45603162113302516051925250032, 4.08522439675853833574654485847, 5.42157485564327696847866596917, 6.13463901697323520316804110426, 7.32489936962704426752280907022, 7.53385070333210197779980223463, 8.598277221303195924618230929176, 9.475118209314111554973841736861

Graph of the $Z$-function along the critical line