L(s) = 1 | + (−2.44 − 1.41i)2-s + (0.529 + 2.95i)3-s + (1.98 + 3.44i)4-s + (−1.84 − 3.19i)5-s + (2.87 − 7.97i)6-s + (−1.20 − 0.696i)7-s + 0.0600i·8-s + (−8.43 + 3.12i)9-s + 10.4i·10-s + (9.91 − 17.1i)11-s + (−9.12 + 7.69i)12-s + (8.79 + 15.2i)13-s + (1.96 + 3.40i)14-s + (8.45 − 7.13i)15-s + (8.04 − 13.9i)16-s + (10.4 − 13.3i)17-s + ⋯ |
L(s) = 1 | + (−1.22 − 0.706i)2-s + (0.176 + 0.984i)3-s + (0.497 + 0.861i)4-s + (−0.368 − 0.638i)5-s + (0.479 − 1.32i)6-s + (−0.172 − 0.0995i)7-s + 0.00750i·8-s + (−0.937 + 0.347i)9-s + 1.04i·10-s + (0.901 − 1.56i)11-s + (−0.760 + 0.641i)12-s + (0.676 + 1.17i)13-s + (0.140 + 0.243i)14-s + (0.563 − 0.475i)15-s + (0.502 − 0.870i)16-s + (0.615 − 0.788i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 153 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.534 + 0.844i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 153 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.534 + 0.844i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.652406 - 0.359084i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.652406 - 0.359084i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.529 - 2.95i)T \) |
| 17 | \( 1 + (-10.4 + 13.3i)T \) |
good | 2 | \( 1 + (2.44 + 1.41i)T + (2 + 3.46i)T^{2} \) |
| 5 | \( 1 + (1.84 + 3.19i)T + (-12.5 + 21.6i)T^{2} \) |
| 7 | \( 1 + (1.20 + 0.696i)T + (24.5 + 42.4i)T^{2} \) |
| 11 | \( 1 + (-9.91 + 17.1i)T + (-60.5 - 104. i)T^{2} \) |
| 13 | \( 1 + (-8.79 - 15.2i)T + (-84.5 + 146. i)T^{2} \) |
| 19 | \( 1 - 17.1T + 361T^{2} \) |
| 23 | \( 1 + (8.76 + 15.1i)T + (-264.5 + 458. i)T^{2} \) |
| 29 | \( 1 + (-6.20 + 10.7i)T + (-420.5 - 728. i)T^{2} \) |
| 31 | \( 1 + (-29.8 + 17.2i)T + (480.5 - 832. i)T^{2} \) |
| 37 | \( 1 + 13.0iT - 1.36e3T^{2} \) |
| 41 | \( 1 + (-15.2 - 26.4i)T + (-840.5 + 1.45e3i)T^{2} \) |
| 43 | \( 1 + (17.3 - 30.0i)T + (-924.5 - 1.60e3i)T^{2} \) |
| 47 | \( 1 + (-74.8 - 43.1i)T + (1.10e3 + 1.91e3i)T^{2} \) |
| 53 | \( 1 + 11.8iT - 2.80e3T^{2} \) |
| 59 | \( 1 + (77.9 - 45.0i)T + (1.74e3 - 3.01e3i)T^{2} \) |
| 61 | \( 1 + (1.04 + 0.600i)T + (1.86e3 + 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-29.0 - 50.2i)T + (-2.24e3 + 3.88e3i)T^{2} \) |
| 71 | \( 1 + 119.T + 5.04e3T^{2} \) |
| 73 | \( 1 + 108. iT - 5.32e3T^{2} \) |
| 79 | \( 1 + (2.99 + 1.72i)T + (3.12e3 + 5.40e3i)T^{2} \) |
| 83 | \( 1 + (37.0 + 21.3i)T + (3.44e3 + 5.96e3i)T^{2} \) |
| 89 | \( 1 + 43.3iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (-42.1 - 24.3i)T + (4.70e3 + 8.14e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.77687633564124219856886192325, −11.54904672375877004428647588939, −10.41684973846364466614236751521, −9.346367577786764356858230605044, −8.859846992109238861029304163368, −7.988652158221559502509470164421, −6.01914232666987106976069386570, −4.40904165812923778558585398788, −3.07417911837637451187941886857, −0.841824099194755090049308800078,
1.32348522801335950824911856750, 3.43095454411526164932107178841, 5.89983155021295811272551605052, 6.99098455346820397729691947851, 7.55210311444550414011400545678, 8.511101476706164109309180833781, 9.613030406614826862332042700872, 10.60032935517242777853985156853, 12.00003510394762576055122521601, 12.73909981526257823625411769449