Properties

Label 2-1519-1.1-c1-0-97
Degree $2$
Conductor $1519$
Sign $-1$
Analytic cond. $12.1292$
Root an. cond. $3.48271$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.81·2-s + 0.934·3-s + 1.29·4-s − 2.29·5-s + 1.69·6-s − 1.28·8-s − 2.12·9-s − 4.16·10-s − 4.58·11-s + 1.20·12-s + 4.23·13-s − 2.14·15-s − 4.91·16-s + 2.72·17-s − 3.85·18-s − 2.91·19-s − 2.96·20-s − 8.32·22-s − 3.56·23-s − 1.19·24-s + 0.278·25-s + 7.69·26-s − 4.79·27-s − 5.77·29-s − 3.89·30-s + 31-s − 6.34·32-s + ⋯
L(s)  = 1  + 1.28·2-s + 0.539·3-s + 0.646·4-s − 1.02·5-s + 0.692·6-s − 0.454·8-s − 0.709·9-s − 1.31·10-s − 1.38·11-s + 0.348·12-s + 1.17·13-s − 0.554·15-s − 1.22·16-s + 0.659·17-s − 0.909·18-s − 0.667·19-s − 0.663·20-s − 1.77·22-s − 0.743·23-s − 0.244·24-s + 0.0556·25-s + 1.50·26-s − 0.921·27-s − 1.07·29-s − 0.711·30-s + 0.179·31-s − 1.12·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1519 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1519 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1519\)    =    \(7^{2} \cdot 31\)
Sign: $-1$
Analytic conductor: \(12.1292\)
Root analytic conductor: \(3.48271\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1519,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
31 \( 1 - T \)
good2 \( 1 - 1.81T + 2T^{2} \)
3 \( 1 - 0.934T + 3T^{2} \)
5 \( 1 + 2.29T + 5T^{2} \)
11 \( 1 + 4.58T + 11T^{2} \)
13 \( 1 - 4.23T + 13T^{2} \)
17 \( 1 - 2.72T + 17T^{2} \)
19 \( 1 + 2.91T + 19T^{2} \)
23 \( 1 + 3.56T + 23T^{2} \)
29 \( 1 + 5.77T + 29T^{2} \)
37 \( 1 - 6.22T + 37T^{2} \)
41 \( 1 + 6.30T + 41T^{2} \)
43 \( 1 - 3.42T + 43T^{2} \)
47 \( 1 + 6.69T + 47T^{2} \)
53 \( 1 + 8.79T + 53T^{2} \)
59 \( 1 - 10.3T + 59T^{2} \)
61 \( 1 + 11.1T + 61T^{2} \)
67 \( 1 - 7.40T + 67T^{2} \)
71 \( 1 - 12.1T + 71T^{2} \)
73 \( 1 + 2.78T + 73T^{2} \)
79 \( 1 + 16.5T + 79T^{2} \)
83 \( 1 - 9.13T + 83T^{2} \)
89 \( 1 - 10.2T + 89T^{2} \)
97 \( 1 - 6.15T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.815598067747221871556584213409, −8.131419511815179657878404435480, −7.64436151231233474003787626084, −6.30076095510541277108673745749, −5.66337129209814203360478177429, −4.76819171775906041593397474894, −3.76072455699305343912432007512, −3.32506916869790037473351175272, −2.29106773198877467612437230483, 0, 2.29106773198877467612437230483, 3.32506916869790037473351175272, 3.76072455699305343912432007512, 4.76819171775906041593397474894, 5.66337129209814203360478177429, 6.30076095510541277108673745749, 7.64436151231233474003787626084, 8.131419511815179657878404435480, 8.815598067747221871556584213409

Graph of the $Z$-function along the critical line