Properties

Label 1519.2.a.f
Level $1519$
Weight $2$
Character orbit 1519.a
Self dual yes
Analytic conductor $12.129$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1519,2,Mod(1,1519)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1519, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1519.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1519 = 7^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1519.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [7,-3,0,5,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(12.1292760670\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 8x^{5} + 17x^{3} - 3x^{2} - 9x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 217)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{6}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{4} q^{2} - \beta_1 q^{3} + (\beta_{6} - \beta_{4} + \beta_{2} + 1) q^{4} + \beta_{3} q^{5} + ( - \beta_{6} + \beta_{5} + \beta_1) q^{6} + ( - 2 \beta_{6} + \beta_{4} - \beta_{2} + \cdots - 2) q^{8}+ \cdots + (\beta_{6} - \beta_{5} + \beta_{4} + \cdots + 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - 3 q^{2} + 5 q^{4} - q^{5} + 2 q^{6} - 9 q^{8} - 5 q^{9} - 8 q^{10} - 13 q^{11} + 5 q^{12} + 4 q^{13} + 2 q^{15} + 5 q^{16} - 2 q^{17} - 8 q^{18} - 2 q^{19} + 16 q^{20} + 10 q^{22} - 10 q^{23} - 24 q^{24}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{7} - 8x^{5} + 17x^{3} - 3x^{2} - 9x + 3 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{3} - \nu^{2} - 4\nu + 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{5} - 6\nu^{3} - \nu^{2} + 6\nu \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{6} - 7\nu^{4} - \nu^{3} + 11\nu^{2} + \nu - 3 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{6} - 7\nu^{4} - \nu^{3} + 12\nu^{2} + \nu - 5 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( \nu^{6} + \nu^{5} - 8\nu^{4} - 7\nu^{3} + 16\nu^{2} + 8\nu - 8 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{5} - \beta_{4} + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{5} - \beta_{4} + \beta_{2} + 4\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -\beta_{6} + 6\beta_{5} - 5\beta_{4} + \beta_{3} + \beta _1 + 7 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 7\beta_{5} - 7\beta_{4} + \beta_{3} + 6\beta_{2} + 18\beta _1 + 2 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -7\beta_{6} + 32\beta_{5} - 24\beta_{4} + 7\beta_{3} + \beta_{2} + 10\beta _1 + 30 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.78161
2.30691
0.383711
1.31306
−2.04580
0.757989
−0.934251
−2.75716 1.78161 5.60193 2.11666 −4.91219 0 −9.93111 0.174145 −5.83598
1.2 −1.95889 −2.30691 1.83726 0.193728 4.51899 0 0.318791 2.32183 −0.379493
1.3 −1.20176 −0.383711 −0.555767 1.82438 0.461129 0 3.07142 −2.85277 −2.19247
1.4 −0.668509 −1.31306 −1.55310 −3.52580 0.877790 0 2.37528 −1.27588 2.35703
1.5 0.250454 2.04580 −1.93727 −0.922133 0.512379 0 −0.986105 1.18530 −0.230952
1.6 1.52143 −0.757989 0.314764 1.61060 −1.15323 0 −2.56398 −2.42545 2.45042
1.7 1.81444 0.934251 1.29218 −2.29744 1.69514 0 −1.28430 −2.12718 −4.16856
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.7
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(7\) \( -1 \)
\(31\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1519.2.a.f 7
7.b odd 2 1 1519.2.a.g 7
7.d odd 6 2 217.2.f.a 14
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
217.2.f.a 14 7.d odd 6 2
1519.2.a.f 7 1.a even 1 1 trivial
1519.2.a.g 7 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1519))\):

\( T_{2}^{7} + 3T_{2}^{6} - 5T_{2}^{5} - 17T_{2}^{4} + 4T_{2}^{3} + 24T_{2}^{2} + 6T_{2} - 3 \) Copy content Toggle raw display
\( T_{3}^{7} - 8T_{3}^{5} + 17T_{3}^{3} + 3T_{3}^{2} - 9T_{3} - 3 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{7} + 3 T^{6} + \cdots - 3 \) Copy content Toggle raw display
$3$ \( T^{7} - 8 T^{5} + \cdots - 3 \) Copy content Toggle raw display
$5$ \( T^{7} + T^{6} - 14 T^{5} + \cdots + 9 \) Copy content Toggle raw display
$7$ \( T^{7} \) Copy content Toggle raw display
$11$ \( T^{7} + 13 T^{6} + \cdots - 1 \) Copy content Toggle raw display
$13$ \( T^{7} - 4 T^{6} + \cdots - 203 \) Copy content Toggle raw display
$17$ \( T^{7} + 2 T^{6} + \cdots + 479 \) Copy content Toggle raw display
$19$ \( T^{7} + 2 T^{6} + \cdots - 183 \) Copy content Toggle raw display
$23$ \( T^{7} + 10 T^{6} + \cdots + 2007 \) Copy content Toggle raw display
$29$ \( T^{7} + 22 T^{6} + \cdots + 97 \) Copy content Toggle raw display
$31$ \( (T - 1)^{7} \) Copy content Toggle raw display
$37$ \( T^{7} + 12 T^{6} + \cdots - 353 \) Copy content Toggle raw display
$41$ \( T^{7} - 4 T^{6} + \cdots + 10451 \) Copy content Toggle raw display
$43$ \( T^{7} + 3 T^{6} + \cdots - 17979 \) Copy content Toggle raw display
$47$ \( T^{7} + 10 T^{6} + \cdots + 21211 \) Copy content Toggle raw display
$53$ \( T^{7} + 9 T^{6} + \cdots - 2692637 \) Copy content Toggle raw display
$59$ \( T^{7} + 11 T^{6} + \cdots + 195657 \) Copy content Toggle raw display
$61$ \( T^{7} + 13 T^{6} + \cdots + 194127 \) Copy content Toggle raw display
$67$ \( T^{7} - 19 T^{6} + \cdots - 173567 \) Copy content Toggle raw display
$71$ \( T^{7} + 20 T^{6} + \cdots + 5267219 \) Copy content Toggle raw display
$73$ \( T^{7} - 3 T^{6} + \cdots - 3982183 \) Copy content Toggle raw display
$79$ \( T^{7} + 4 T^{6} + \cdots + 1006447 \) Copy content Toggle raw display
$83$ \( T^{7} - 20 T^{6} + \cdots - 231721 \) Copy content Toggle raw display
$89$ \( T^{7} - 3 T^{6} + \cdots + 11331993 \) Copy content Toggle raw display
$97$ \( T^{7} - 3 T^{6} + \cdots + 22421 \) Copy content Toggle raw display
show more
show less