L(s) = 1 | − 1.36·5-s + (2.64 + 0.0810i)7-s + 1.20i·11-s + (0.639 + 0.369i)13-s + (0.693 − 1.20i)17-s + (2.81 − 1.62i)19-s + 3.81i·23-s − 3.12·25-s + (3.50 − 2.02i)29-s + (1.02 − 0.594i)31-s + (−3.61 − 0.110i)35-s + (5.10 + 8.84i)37-s + (0.670 − 1.16i)41-s + (−0.490 − 0.848i)43-s + (1.63 − 2.83i)47-s + ⋯ |
L(s) = 1 | − 0.611·5-s + (0.999 + 0.0306i)7-s + 0.362i·11-s + (0.177 + 0.102i)13-s + (0.168 − 0.291i)17-s + (0.646 − 0.373i)19-s + 0.794i·23-s − 0.625·25-s + (0.649 − 0.375i)29-s + (0.184 − 0.106i)31-s + (−0.611 − 0.0187i)35-s + (0.839 + 1.45i)37-s + (0.104 − 0.181i)41-s + (−0.0747 − 0.129i)43-s + (0.238 − 0.413i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.951 - 0.309i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.951 - 0.309i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.716142786\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.716142786\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-2.64 - 0.0810i)T \) |
good | 5 | \( 1 + 1.36T + 5T^{2} \) |
| 11 | \( 1 - 1.20iT - 11T^{2} \) |
| 13 | \( 1 + (-0.639 - 0.369i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-0.693 + 1.20i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.81 + 1.62i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 - 3.81iT - 23T^{2} \) |
| 29 | \( 1 + (-3.50 + 2.02i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-1.02 + 0.594i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-5.10 - 8.84i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-0.670 + 1.16i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (0.490 + 0.848i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-1.63 + 2.83i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-5.77 - 3.33i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-6.73 - 11.6i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (4.36 + 2.51i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (2.19 + 3.80i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 8.84iT - 71T^{2} \) |
| 73 | \( 1 + (-10.2 - 5.94i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-6.34 + 10.9i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-3.14 - 5.44i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-6.05 - 10.4i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-10.9 + 6.33i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.489206090151608162581883659012, −8.621920904631477910016558961904, −7.80341626507758132001415824446, −7.37744854164555572252642037692, −6.26204697086088052868582653801, −5.22440445158525499349094715988, −4.51979549346156445239249248336, −3.58849326521520568620215581330, −2.36689243664885669362765357775, −1.07013009422659588338258159658,
0.891283674179846381458236894088, 2.24654141157593932171325551673, 3.52247714860296251084535657322, 4.33271085056057359126583619405, 5.25546545782729596562756974271, 6.10671666160675906968654833216, 7.18771122673884726817047194505, 7.970971915800147017873439058131, 8.408704340963586735946344886807, 9.360560190395875796557737554456