L(s) = 1 | + 2i·2-s − 3i·3-s − 4·4-s + 6·6-s − 4i·7-s − 8i·8-s − 9·9-s − 48·11-s + 12i·12-s − 2i·13-s + 8·14-s + 16·16-s − 114i·17-s − 18i·18-s − 140·19-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 0.577i·3-s − 0.5·4-s + 0.408·6-s − 0.215i·7-s − 0.353i·8-s − 0.333·9-s − 1.31·11-s + 0.288i·12-s − 0.0426i·13-s + 0.152·14-s + 0.250·16-s − 1.62i·17-s − 0.235i·18-s − 1.69·19-s + ⋯ |
Λ(s)=(=(150s/2ΓC(s)L(s)(−0.447+0.894i)Λ(4−s)
Λ(s)=(=(150s/2ΓC(s+3/2)L(s)(−0.447+0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
150
= 2⋅3⋅52
|
Sign: |
−0.447+0.894i
|
Analytic conductor: |
8.85028 |
Root analytic conductor: |
2.97494 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ150(49,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 150, ( :3/2), −0.447+0.894i)
|
Particular Values
L(2) |
≈ |
0.311319−0.503725i |
L(21) |
≈ |
0.311319−0.503725i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−2iT |
| 3 | 1+3iT |
| 5 | 1 |
good | 7 | 1+4iT−343T2 |
| 11 | 1+48T+1.33e3T2 |
| 13 | 1+2iT−2.19e3T2 |
| 17 | 1+114iT−4.91e3T2 |
| 19 | 1+140T+6.85e3T2 |
| 23 | 1+72iT−1.21e4T2 |
| 29 | 1+210T+2.43e4T2 |
| 31 | 1−272T+2.97e4T2 |
| 37 | 1+334iT−5.06e4T2 |
| 41 | 1+198T+6.89e4T2 |
| 43 | 1−268iT−7.95e4T2 |
| 47 | 1−216iT−1.03e5T2 |
| 53 | 1−78iT−1.48e5T2 |
| 59 | 1+240T+2.05e5T2 |
| 61 | 1−302T+2.26e5T2 |
| 67 | 1−596iT−3.00e5T2 |
| 71 | 1+768T+3.57e5T2 |
| 73 | 1−478iT−3.89e5T2 |
| 79 | 1−640T+4.93e5T2 |
| 83 | 1−348iT−5.71e5T2 |
| 89 | 1+210T+7.04e5T2 |
| 97 | 1+1.53e3iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.56129776480021685096843606329, −11.21083133443429788769480921893, −10.12795762288647170570320878774, −8.823280012398518663406337505394, −7.82624810855910269559865874379, −6.96407135356038098304008064783, −5.76280917360728651188354811322, −4.54470384811990768391320096075, −2.58079993469889873831825000244, −0.26970457103126915749408202189,
2.15063714118031055240266891461, 3.64809476994345000178108283069, 4.89803569275988450126733203883, 6.13617407268324372371099619580, 8.008723332242600693263282145555, 8.815830045508566178127693547766, 10.22576905109508936003417735427, 10.59147494896833370313373735651, 11.78821021563569664780997133751, 12.86979543112994399977079057624