L(s) = 1 | − 2i·2-s + 3i·3-s − 4·4-s + 6·6-s + 4i·7-s + 8i·8-s − 9·9-s − 48·11-s − 12i·12-s + 2i·13-s + 8·14-s + 16·16-s + 114i·17-s + 18i·18-s − 140·19-s + ⋯ |
L(s) = 1 | − 0.707i·2-s + 0.577i·3-s − 0.5·4-s + 0.408·6-s + 0.215i·7-s + 0.353i·8-s − 0.333·9-s − 1.31·11-s − 0.288i·12-s + 0.0426i·13-s + 0.152·14-s + 0.250·16-s + 1.62i·17-s + 0.235i·18-s − 1.69·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 150 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.311319 + 0.503725i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.311319 + 0.503725i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + 2iT \) |
| 3 | \( 1 - 3iT \) |
| 5 | \( 1 \) |
good | 7 | \( 1 - 4iT - 343T^{2} \) |
| 11 | \( 1 + 48T + 1.33e3T^{2} \) |
| 13 | \( 1 - 2iT - 2.19e3T^{2} \) |
| 17 | \( 1 - 114iT - 4.91e3T^{2} \) |
| 19 | \( 1 + 140T + 6.85e3T^{2} \) |
| 23 | \( 1 - 72iT - 1.21e4T^{2} \) |
| 29 | \( 1 + 210T + 2.43e4T^{2} \) |
| 31 | \( 1 - 272T + 2.97e4T^{2} \) |
| 37 | \( 1 - 334iT - 5.06e4T^{2} \) |
| 41 | \( 1 + 198T + 6.89e4T^{2} \) |
| 43 | \( 1 + 268iT - 7.95e4T^{2} \) |
| 47 | \( 1 + 216iT - 1.03e5T^{2} \) |
| 53 | \( 1 + 78iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 240T + 2.05e5T^{2} \) |
| 61 | \( 1 - 302T + 2.26e5T^{2} \) |
| 67 | \( 1 + 596iT - 3.00e5T^{2} \) |
| 71 | \( 1 + 768T + 3.57e5T^{2} \) |
| 73 | \( 1 + 478iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 640T + 4.93e5T^{2} \) |
| 83 | \( 1 + 348iT - 5.71e5T^{2} \) |
| 89 | \( 1 + 210T + 7.04e5T^{2} \) |
| 97 | \( 1 - 1.53e3iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.86979543112994399977079057624, −11.78821021563569664780997133751, −10.59147494896833370313373735651, −10.22576905109508936003417735427, −8.815830045508566178127693547766, −8.008723332242600693263282145555, −6.13617407268324372371099619580, −4.89803569275988450126733203883, −3.64809476994345000178108283069, −2.15063714118031055240266891461,
0.26970457103126915749408202189, 2.58079993469889873831825000244, 4.54470384811990768391320096075, 5.76280917360728651188354811322, 6.96407135356038098304008064783, 7.82624810855910269559865874379, 8.823280012398518663406337505394, 10.12795762288647170570320878774, 11.21083133443429788769480921893, 12.56129776480021685096843606329