L(s) = 1 | + (95.3 + 55.0i)3-s + (20.9 − 12.0i)5-s + (2.77e3 + 4.81e3i)9-s + (5.76e3 − 9.98e3i)11-s + 1.61e4i·13-s + 2.65e3·15-s + (1.18e4 + 6.82e3i)17-s + (9.56e4 − 5.52e4i)19-s + (4.77e4 + 8.27e4i)23-s + (−1.95e5 + 3.37e5i)25-s − 1.10e5i·27-s + 9.68e5·29-s + (−5.56e5 − 3.21e5i)31-s + (1.09e6 − 6.34e5i)33-s + (1.45e6 + 2.52e6i)37-s + ⋯ |
L(s) = 1 | + (1.17 + 0.679i)3-s + (0.0334 − 0.0193i)5-s + (0.423 + 0.733i)9-s + (0.393 − 0.681i)11-s + 0.566i·13-s + 0.0524·15-s + (0.141 + 0.0817i)17-s + (0.734 − 0.423i)19-s + (0.170 + 0.295i)23-s + (−0.499 + 0.864i)25-s − 0.208i·27-s + 1.36·29-s + (−0.602 − 0.348i)31-s + (0.926 − 0.535i)33-s + (0.777 + 1.34i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.611 - 0.791i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (0.611 - 0.791i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{9}{2})\) |
\(\approx\) |
\(3.651596773\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.651596773\) |
\(L(5)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (-95.3 - 55.0i)T + (3.28e3 + 5.68e3i)T^{2} \) |
| 5 | \( 1 + (-20.9 + 12.0i)T + (1.95e5 - 3.38e5i)T^{2} \) |
| 11 | \( 1 + (-5.76e3 + 9.98e3i)T + (-1.07e8 - 1.85e8i)T^{2} \) |
| 13 | \( 1 - 1.61e4iT - 8.15e8T^{2} \) |
| 17 | \( 1 + (-1.18e4 - 6.82e3i)T + (3.48e9 + 6.04e9i)T^{2} \) |
| 19 | \( 1 + (-9.56e4 + 5.52e4i)T + (8.49e9 - 1.47e10i)T^{2} \) |
| 23 | \( 1 + (-4.77e4 - 8.27e4i)T + (-3.91e10 + 6.78e10i)T^{2} \) |
| 29 | \( 1 - 9.68e5T + 5.00e11T^{2} \) |
| 31 | \( 1 + (5.56e5 + 3.21e5i)T + (4.26e11 + 7.38e11i)T^{2} \) |
| 37 | \( 1 + (-1.45e6 - 2.52e6i)T + (-1.75e12 + 3.04e12i)T^{2} \) |
| 41 | \( 1 - 2.54e6iT - 7.98e12T^{2} \) |
| 43 | \( 1 - 4.32e6T + 1.16e13T^{2} \) |
| 47 | \( 1 + (-8.23e6 + 4.75e6i)T + (1.19e13 - 2.06e13i)T^{2} \) |
| 53 | \( 1 + (1.66e6 - 2.88e6i)T + (-3.11e13 - 5.39e13i)T^{2} \) |
| 59 | \( 1 + (-1.22e6 - 7.08e5i)T + (7.34e13 + 1.27e14i)T^{2} \) |
| 61 | \( 1 + (9.79e6 - 5.65e6i)T + (9.58e13 - 1.66e14i)T^{2} \) |
| 67 | \( 1 + (3.61e6 - 6.26e6i)T + (-2.03e14 - 3.51e14i)T^{2} \) |
| 71 | \( 1 + 4.54e6T + 6.45e14T^{2} \) |
| 73 | \( 1 + (-1.47e7 - 8.50e6i)T + (4.03e14 + 6.98e14i)T^{2} \) |
| 79 | \( 1 + (2.65e7 + 4.60e7i)T + (-7.58e14 + 1.31e15i)T^{2} \) |
| 83 | \( 1 - 4.31e7iT - 2.25e15T^{2} \) |
| 89 | \( 1 + (6.63e7 - 3.83e7i)T + (1.96e15 - 3.40e15i)T^{2} \) |
| 97 | \( 1 + 2.32e7iT - 7.83e15T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.09922777377598401305339984341, −9.873600624052521802451455908155, −9.186964063120222568581390883209, −8.406165639768905744891285912245, −7.31489641643259010968362970646, −5.94487391126996026109136398897, −4.53123809444395206461769641437, −3.52352456996778642705460825124, −2.60901693469142635813043115864, −1.09393268988008470916480571616,
0.839050550823157389071018971074, 2.05946939873317604208986518044, 2.99818067432363001062624775783, 4.25468357831845652578214615038, 5.78946530403718406692802235102, 7.12993891587467866486179657904, 7.80960312949018712910797245047, 8.790362251547288010475779243662, 9.678203765203247554200358452804, 10.78553968155856674339060694783