Properties

Label 196.9.h.c.129.13
Level $196$
Weight $9$
Character 196.129
Analytic conductor $79.846$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [196,9,Mod(117,196)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(196, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 5])) N = Newforms(chi, 9, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("196.117"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Level: \( N \) \(=\) \( 196 = 2^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 196.h (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(79.8462075720\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 129.13
Character \(\chi\) \(=\) 196.129
Dual form 196.9.h.c.117.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(95.3296 + 55.0385i) q^{3} +(20.9063 - 12.0703i) q^{5} +(2777.98 + 4811.61i) q^{9} +(5764.63 - 9984.63i) q^{11} +16167.0i q^{13} +2657.32 q^{15} +(11823.0 + 6826.04i) q^{17} +(95678.7 - 55240.1i) q^{19} +(47748.3 + 82702.4i) q^{23} +(-195021. + 337786. i) q^{25} -110631. i q^{27} +968391. q^{29} +(-556669. - 321393. i) q^{31} +(1.09908e6 - 634554. i) q^{33} +(1.45709e6 + 2.52376e6i) q^{37} +(-889810. + 1.54120e6i) q^{39} +2.54503e6i q^{41} +4.32250e6 q^{43} +(116155. + 67062.1i) q^{45} +(8.23472e6 - 4.75432e6i) q^{47} +(751390. + 1.30145e6i) q^{51} +(-1.66496e6 + 2.88379e6i) q^{53} -278323. i q^{55} +1.21613e7 q^{57} +(1.22742e6 + 708648. i) q^{59} +(-9.79018e6 + 5.65236e6i) q^{61} +(195141. + 337993. i) q^{65} +(-3.61550e6 + 6.26223e6i) q^{67} +1.05120e7i q^{69} -4.54041e6 q^{71} +(1.47310e7 + 8.50494e6i) q^{73} +(-3.71826e7 + 2.14674e7i) q^{75} +(-2.65854e7 - 4.60472e7i) q^{79} +(2.43153e7 - 4.21154e7i) q^{81} +4.31758e7i q^{83} +329569. q^{85} +(9.23163e7 + 5.32988e7i) q^{87} +(-6.63688e7 + 3.83180e7i) q^{89} +(-3.53780e7 - 6.12765e7i) q^{93} +(1.33353e6 - 2.30974e6i) q^{95} -2.32937e7i q^{97} +6.40562e7 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 52264 q^{9} + 22776 q^{11} + 206064 q^{15} - 571560 q^{23} + 1030440 q^{25} - 5384256 q^{29} + 3376640 q^{37} + 10336136 q^{39} + 18525008 q^{43} + 16028856 q^{51} - 14106216 q^{53} - 4787360 q^{57}+ \cdots + 1119499328 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/196\mathbb{Z}\right)^\times\).

\(n\) \(99\) \(101\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 95.3296 + 55.0385i 1.17691 + 0.679488i 0.955297 0.295647i \(-0.0955352\pi\)
0.221611 + 0.975135i \(0.428869\pi\)
\(4\) 0 0
\(5\) 20.9063 12.0703i 0.0334501 0.0193124i −0.483182 0.875520i \(-0.660519\pi\)
0.516632 + 0.856208i \(0.327186\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 2777.98 + 4811.61i 0.423409 + 0.733365i
\(10\) 0 0
\(11\) 5764.63 9984.63i 0.393732 0.681964i −0.599206 0.800595i \(-0.704517\pi\)
0.992938 + 0.118631i \(0.0378505\pi\)
\(12\) 0 0
\(13\) 16167.0i 0.566053i 0.959112 + 0.283026i \(0.0913384\pi\)
−0.959112 + 0.283026i \(0.908662\pi\)
\(14\) 0 0
\(15\) 2657.32 0.0524903
\(16\) 0 0
\(17\) 11823.0 + 6826.04i 0.141558 + 0.0817284i 0.569106 0.822264i \(-0.307289\pi\)
−0.427548 + 0.903992i \(0.640623\pi\)
\(18\) 0 0
\(19\) 95678.7 55240.1i 0.734177 0.423877i −0.0857712 0.996315i \(-0.527335\pi\)
0.819948 + 0.572438i \(0.194002\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 47748.3 + 82702.4i 0.170626 + 0.295534i 0.938639 0.344901i \(-0.112088\pi\)
−0.768013 + 0.640435i \(0.778754\pi\)
\(24\) 0 0
\(25\) −195021. + 337786.i −0.499254 + 0.864733i
\(26\) 0 0
\(27\) 110631.i 0.208172i
\(28\) 0 0
\(29\) 968391. 1.36917 0.684587 0.728931i \(-0.259983\pi\)
0.684587 + 0.728931i \(0.259983\pi\)
\(30\) 0 0
\(31\) −556669. 321393.i −0.602768 0.348008i 0.167362 0.985896i \(-0.446475\pi\)
−0.770130 + 0.637887i \(0.779808\pi\)
\(32\) 0 0
\(33\) 1.09908e6 634554.i 0.926773 0.535072i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 1.45709e6 + 2.52376e6i 0.777464 + 1.34661i 0.933399 + 0.358840i \(0.116828\pi\)
−0.155935 + 0.987767i \(0.549839\pi\)
\(38\) 0 0
\(39\) −889810. + 1.54120e6i −0.384626 + 0.666192i
\(40\) 0 0
\(41\) 2.54503e6i 0.900653i 0.892864 + 0.450326i \(0.148692\pi\)
−0.892864 + 0.450326i \(0.851308\pi\)
\(42\) 0 0
\(43\) 4.32250e6 1.26433 0.632166 0.774833i \(-0.282166\pi\)
0.632166 + 0.774833i \(0.282166\pi\)
\(44\) 0 0
\(45\) 116155. + 67062.1i 0.0283261 + 0.0163541i
\(46\) 0 0
\(47\) 8.23472e6 4.75432e6i 1.68755 0.974309i 0.731170 0.682195i \(-0.238975\pi\)
0.956383 0.292114i \(-0.0943587\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 751390. + 1.30145e6i 0.111067 + 0.192374i
\(52\) 0 0
\(53\) −1.66496e6 + 2.88379e6i −0.211008 + 0.365477i −0.952030 0.306004i \(-0.901008\pi\)
0.741022 + 0.671481i \(0.234341\pi\)
\(54\) 0 0
\(55\) 278323.i 0.0304157i
\(56\) 0 0
\(57\) 1.21613e7 1.15208
\(58\) 0 0
\(59\) 1.22742e6 + 708648.i 0.101294 + 0.0584821i 0.549791 0.835302i \(-0.314707\pi\)
−0.448497 + 0.893784i \(0.648041\pi\)
\(60\) 0 0
\(61\) −9.79018e6 + 5.65236e6i −0.707085 + 0.408236i −0.809981 0.586457i \(-0.800522\pi\)
0.102896 + 0.994692i \(0.467189\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 195141. + 337993.i 0.0109319 + 0.0189345i
\(66\) 0 0
\(67\) −3.61550e6 + 6.26223e6i −0.179419 + 0.310763i −0.941682 0.336505i \(-0.890755\pi\)
0.762263 + 0.647268i \(0.224089\pi\)
\(68\) 0 0
\(69\) 1.05120e7i 0.463755i
\(70\) 0 0
\(71\) −4.54041e6 −0.178674 −0.0893370 0.996001i \(-0.528475\pi\)
−0.0893370 + 0.996001i \(0.528475\pi\)
\(72\) 0 0
\(73\) 1.47310e7 + 8.50494e6i 0.518729 + 0.299488i 0.736415 0.676531i \(-0.236517\pi\)
−0.217685 + 0.976019i \(0.569851\pi\)
\(74\) 0 0
\(75\) −3.71826e7 + 2.14674e7i −1.17515 + 0.678475i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −2.65854e7 4.60472e7i −0.682549 1.18221i −0.974200 0.225685i \(-0.927538\pi\)
0.291651 0.956525i \(-0.405795\pi\)
\(80\) 0 0
\(81\) 2.43153e7 4.21154e7i 0.564859 0.978364i
\(82\) 0 0
\(83\) 4.31758e7i 0.909762i 0.890552 + 0.454881i \(0.150318\pi\)
−0.890552 + 0.454881i \(0.849682\pi\)
\(84\) 0 0
\(85\) 329569. 0.00631350
\(86\) 0 0
\(87\) 9.23163e7 + 5.32988e7i 1.61139 + 0.930338i
\(88\) 0 0
\(89\) −6.63688e7 + 3.83180e7i −1.05780 + 0.610721i −0.924823 0.380398i \(-0.875787\pi\)
−0.132977 + 0.991119i \(0.542454\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −3.53780e7 6.12765e7i −0.472935 0.819147i
\(94\) 0 0
\(95\) 1.33353e6 2.30974e6i 0.0163722 0.0283575i
\(96\) 0 0
\(97\) 2.32937e7i 0.263118i −0.991308 0.131559i \(-0.958002\pi\)
0.991308 0.131559i \(-0.0419983\pi\)
\(98\) 0 0
\(99\) 6.40562e7 0.666838
\(100\) 0 0
\(101\) 8.11435e7 + 4.68482e7i 0.779773 + 0.450202i 0.836350 0.548196i \(-0.184685\pi\)
−0.0565766 + 0.998398i \(0.518019\pi\)
\(102\) 0 0
\(103\) −1.25657e8 + 7.25480e7i −1.11644 + 0.644579i −0.940491 0.339819i \(-0.889634\pi\)
−0.175954 + 0.984398i \(0.556301\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −2.30680e7 3.99549e7i −0.175984 0.304814i 0.764517 0.644604i \(-0.222978\pi\)
−0.940502 + 0.339789i \(0.889644\pi\)
\(108\) 0 0
\(109\) −2.26788e7 + 3.92808e7i −0.160662 + 0.278275i −0.935106 0.354367i \(-0.884696\pi\)
0.774444 + 0.632642i \(0.218030\pi\)
\(110\) 0 0
\(111\) 3.20785e8i 2.11311i
\(112\) 0 0
\(113\) 3.21193e8 1.96994 0.984969 0.172733i \(-0.0552599\pi\)
0.984969 + 0.172733i \(0.0552599\pi\)
\(114\) 0 0
\(115\) 1.99648e6 + 1.15267e6i 0.0114150 + 0.00659043i
\(116\) 0 0
\(117\) −7.77894e7 + 4.49118e7i −0.415123 + 0.239672i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 4.07175e7 + 7.05248e7i 0.189950 + 0.329004i
\(122\) 0 0
\(123\) −1.40075e8 + 2.42616e8i −0.611983 + 1.05999i
\(124\) 0 0
\(125\) 1.88457e7i 0.0771921i
\(126\) 0 0
\(127\) 3.60956e8 1.38752 0.693761 0.720206i \(-0.255953\pi\)
0.693761 + 0.720206i \(0.255953\pi\)
\(128\) 0 0
\(129\) 4.12062e8 + 2.37904e8i 1.48800 + 0.859099i
\(130\) 0 0
\(131\) 3.09304e8 1.78577e8i 1.05027 0.606373i 0.127544 0.991833i \(-0.459290\pi\)
0.922725 + 0.385460i \(0.125957\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −1.33535e6 2.31289e6i −0.00402031 0.00696338i
\(136\) 0 0
\(137\) 6.56374e7 1.13687e8i 0.186324 0.322723i −0.757698 0.652606i \(-0.773676\pi\)
0.944022 + 0.329883i \(0.107009\pi\)
\(138\) 0 0
\(139\) 5.79820e8i 1.55322i 0.629979 + 0.776612i \(0.283063\pi\)
−0.629979 + 0.776612i \(0.716937\pi\)
\(140\) 0 0
\(141\) 1.04668e9 2.64813
\(142\) 0 0
\(143\) 1.61422e8 + 9.31970e7i 0.386027 + 0.222873i
\(144\) 0 0
\(145\) 2.02455e7 1.16887e7i 0.0457990 0.0264421i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1.32188e8 + 2.28956e8i 0.268193 + 0.464524i 0.968395 0.249421i \(-0.0802402\pi\)
−0.700202 + 0.713944i \(0.746907\pi\)
\(150\) 0 0
\(151\) −2.65806e8 + 4.60390e8i −0.511278 + 0.885559i 0.488637 + 0.872487i \(0.337494\pi\)
−0.999915 + 0.0130720i \(0.995839\pi\)
\(152\) 0 0
\(153\) 7.58505e7i 0.138418i
\(154\) 0 0
\(155\) −1.55172e7 −0.0268835
\(156\) 0 0
\(157\) 5.50247e7 + 3.17685e7i 0.0905647 + 0.0522875i 0.544598 0.838697i \(-0.316682\pi\)
−0.454034 + 0.890985i \(0.650015\pi\)
\(158\) 0 0
\(159\) −3.17439e8 + 1.83274e8i −0.496675 + 0.286755i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −2.92321e8 5.06315e8i −0.414104 0.717250i 0.581230 0.813740i \(-0.302572\pi\)
−0.995334 + 0.0964898i \(0.969238\pi\)
\(164\) 0 0
\(165\) 1.53185e7 2.65324e7i 0.0206671 0.0357965i
\(166\) 0 0
\(167\) 7.54928e8i 0.970598i 0.874348 + 0.485299i \(0.161289\pi\)
−0.874348 + 0.485299i \(0.838711\pi\)
\(168\) 0 0
\(169\) 5.54358e8 0.679584
\(170\) 0 0
\(171\) 5.31588e8 + 3.06912e8i 0.621714 + 0.358947i
\(172\) 0 0
\(173\) −1.31118e9 + 7.57011e8i −1.46379 + 0.845119i −0.999184 0.0403982i \(-0.987137\pi\)
−0.464606 + 0.885518i \(0.653804\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 7.80060e7 + 1.35110e8i 0.0794758 + 0.137656i
\(178\) 0 0
\(179\) −1.97676e7 + 3.42385e7i −0.0192549 + 0.0333505i −0.875492 0.483232i \(-0.839463\pi\)
0.856237 + 0.516583i \(0.172796\pi\)
\(180\) 0 0
\(181\) 9.35971e8i 0.872063i −0.899931 0.436032i \(-0.856384\pi\)
0.899931 0.436032i \(-0.143616\pi\)
\(182\) 0 0
\(183\) −1.24439e9 −1.10956
\(184\) 0 0
\(185\) 6.09249e7 + 3.51750e7i 0.0520126 + 0.0300295i
\(186\) 0 0
\(187\) 1.36311e8 7.86991e7i 0.111472 0.0643581i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −1.09529e9 1.89710e9i −0.822993 1.42547i −0.903443 0.428708i \(-0.858969\pi\)
0.0804501 0.996759i \(-0.474364\pi\)
\(192\) 0 0
\(193\) 1.24858e9 2.16260e9i 0.899886 1.55865i 0.0722467 0.997387i \(-0.476983\pi\)
0.827639 0.561261i \(-0.189684\pi\)
\(194\) 0 0
\(195\) 4.29610e7i 0.0297123i
\(196\) 0 0
\(197\) −7.82360e8 −0.519447 −0.259724 0.965683i \(-0.583632\pi\)
−0.259724 + 0.965683i \(0.583632\pi\)
\(198\) 0 0
\(199\) 6.59868e8 + 3.80975e8i 0.420770 + 0.242932i 0.695407 0.718616i \(-0.255224\pi\)
−0.274637 + 0.961548i \(0.588558\pi\)
\(200\) 0 0
\(201\) −6.89328e8 + 3.97983e8i −0.422320 + 0.243826i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 3.07192e7 + 5.32072e7i 0.0173938 + 0.0301269i
\(206\) 0 0
\(207\) −2.65288e8 + 4.59492e8i −0.144489 + 0.250263i
\(208\) 0 0
\(209\) 1.27376e9i 0.667576i
\(210\) 0 0
\(211\) −2.33535e9 −1.17821 −0.589103 0.808058i \(-0.700519\pi\)
−0.589103 + 0.808058i \(0.700519\pi\)
\(212\) 0 0
\(213\) −4.32835e8 2.49897e8i −0.210283 0.121407i
\(214\) 0 0
\(215\) 9.03677e7 5.21738e7i 0.0422921 0.0244174i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 9.36200e8 + 1.62155e9i 0.406998 + 0.704941i
\(220\) 0 0
\(221\) −1.10357e8 + 1.91143e8i −0.0462626 + 0.0801291i
\(222\) 0 0
\(223\) 1.59601e9i 0.645380i 0.946505 + 0.322690i \(0.104587\pi\)
−0.946505 + 0.322690i \(0.895413\pi\)
\(224\) 0 0
\(225\) −2.16706e9 −0.845554
\(226\) 0 0
\(227\) −3.57744e9 2.06544e9i −1.34731 0.777872i −0.359446 0.933166i \(-0.617034\pi\)
−0.987868 + 0.155294i \(0.950368\pi\)
\(228\) 0 0
\(229\) 1.11788e9 6.45408e8i 0.406493 0.234689i −0.282789 0.959182i \(-0.591260\pi\)
0.689282 + 0.724493i \(0.257926\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 6.07602e8 + 1.05240e9i 0.206156 + 0.357073i 0.950500 0.310723i \(-0.100571\pi\)
−0.744344 + 0.667796i \(0.767238\pi\)
\(234\) 0 0
\(235\) 1.14772e8 1.98791e8i 0.0376326 0.0651816i
\(236\) 0 0
\(237\) 5.85288e9i 1.85514i
\(238\) 0 0
\(239\) 1.18854e9 0.364267 0.182134 0.983274i \(-0.441700\pi\)
0.182134 + 0.983274i \(0.441700\pi\)
\(240\) 0 0
\(241\) −3.74859e9 2.16425e9i −1.11122 0.641562i −0.172074 0.985084i \(-0.555047\pi\)
−0.939145 + 0.343522i \(0.888380\pi\)
\(242\) 0 0
\(243\) 4.00733e9 2.31364e9i 1.14929 0.663544i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 8.93069e8 + 1.54684e9i 0.239937 + 0.415583i
\(248\) 0 0
\(249\) −2.37633e9 + 4.11593e9i −0.618173 + 1.07071i
\(250\) 0 0
\(251\) 1.91790e9i 0.483205i −0.970375 0.241602i \(-0.922327\pi\)
0.970375 0.241602i \(-0.0776730\pi\)
\(252\) 0 0
\(253\) 1.10100e9 0.268724
\(254\) 0 0
\(255\) 3.14176e7 + 1.81390e7i 0.00743041 + 0.00428995i
\(256\) 0 0
\(257\) 6.25843e9 3.61331e9i 1.43461 0.828271i 0.437140 0.899393i \(-0.355991\pi\)
0.997468 + 0.0711223i \(0.0226581\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 2.69017e9 + 4.65952e9i 0.579720 + 1.00410i
\(262\) 0 0
\(263\) 1.97015e9 3.41239e9i 0.411790 0.713241i −0.583296 0.812260i \(-0.698237\pi\)
0.995086 + 0.0990189i \(0.0315704\pi\)
\(264\) 0 0
\(265\) 8.03860e7i 0.0163003i
\(266\) 0 0
\(267\) −8.43587e9 −1.65991
\(268\) 0 0
\(269\) −3.56210e9 2.05658e9i −0.680294 0.392768i 0.119672 0.992814i \(-0.461816\pi\)
−0.799966 + 0.600046i \(0.795149\pi\)
\(270\) 0 0
\(271\) 6.09050e9 3.51635e9i 1.12921 0.651952i 0.185476 0.982649i \(-0.440617\pi\)
0.943737 + 0.330697i \(0.107284\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 2.24845e9 + 3.89443e9i 0.393145 + 0.680946i
\(276\) 0 0
\(277\) −1.03030e9 + 1.78453e9i −0.175002 + 0.303113i −0.940162 0.340728i \(-0.889327\pi\)
0.765160 + 0.643840i \(0.222660\pi\)
\(278\) 0 0
\(279\) 3.57129e9i 0.589398i
\(280\) 0 0
\(281\) −1.05644e8 −0.0169442 −0.00847210 0.999964i \(-0.502697\pi\)
−0.00847210 + 0.999964i \(0.502697\pi\)
\(282\) 0 0
\(283\) −5.72282e9 3.30407e9i −0.892205 0.515115i −0.0175419 0.999846i \(-0.505584\pi\)
−0.874663 + 0.484731i \(0.838917\pi\)
\(284\) 0 0
\(285\) 2.54249e8 1.46791e8i 0.0385372 0.0222495i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −3.39469e9 5.87977e9i −0.486641 0.842887i
\(290\) 0 0
\(291\) 1.28205e9 2.22058e9i 0.178786 0.309666i
\(292\) 0 0
\(293\) 3.40164e9i 0.461549i 0.973007 + 0.230774i \(0.0741259\pi\)
−0.973007 + 0.230774i \(0.925874\pi\)
\(294\) 0 0
\(295\) 3.42143e7 0.00451773
\(296\) 0 0
\(297\) −1.10461e9 6.37747e8i −0.141966 0.0819639i
\(298\) 0 0
\(299\) −1.33705e9 + 7.71948e8i −0.167288 + 0.0965836i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 5.15692e9 + 8.93204e9i 0.611814 + 1.05969i
\(304\) 0 0
\(305\) −1.36451e8 + 2.36340e8i −0.0157680 + 0.0273111i
\(306\) 0 0
\(307\) 1.01001e10i 1.13704i −0.822671 0.568518i \(-0.807517\pi\)
0.822671 0.568518i \(-0.192483\pi\)
\(308\) 0 0
\(309\) −1.59717e10 −1.75194
\(310\) 0 0
\(311\) 8.06784e8 + 4.65797e8i 0.0862414 + 0.0497915i 0.542501 0.840055i \(-0.317478\pi\)
−0.456259 + 0.889847i \(0.650811\pi\)
\(312\) 0 0
\(313\) −1.19209e10 + 6.88251e9i −1.24202 + 0.717083i −0.969506 0.245068i \(-0.921190\pi\)
−0.272518 + 0.962151i \(0.587857\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −6.06158e9 1.04990e10i −0.600273 1.03970i −0.992779 0.119954i \(-0.961725\pi\)
0.392506 0.919749i \(-0.371608\pi\)
\(318\) 0 0
\(319\) 5.58241e9 9.66902e9i 0.539088 0.933727i
\(320\) 0 0
\(321\) 5.07851e9i 0.478318i
\(322\) 0 0
\(323\) 1.50828e9 0.138571
\(324\) 0 0
\(325\) −5.46101e9 3.15291e9i −0.489485 0.282604i
\(326\) 0 0
\(327\) −4.32392e9 + 2.49642e9i −0.378170 + 0.218336i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −8.30685e9 1.43879e10i −0.692030 1.19863i −0.971172 0.238381i \(-0.923383\pi\)
0.279142 0.960250i \(-0.409950\pi\)
\(332\) 0 0
\(333\) −8.09556e9 + 1.40219e10i −0.658370 + 1.14033i
\(334\) 0 0
\(335\) 1.74560e8i 0.0138601i
\(336\) 0 0
\(337\) −3.60721e9 −0.279674 −0.139837 0.990175i \(-0.544658\pi\)
−0.139837 + 0.990175i \(0.544658\pi\)
\(338\) 0 0
\(339\) 3.06192e10 + 1.76780e10i 2.31844 + 1.33855i
\(340\) 0 0
\(341\) −6.41798e9 + 3.70542e9i −0.474658 + 0.274044i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 1.26883e8 + 2.19767e8i 0.00895623 + 0.0155127i
\(346\) 0 0
\(347\) 1.33512e10 2.31250e10i 0.920882 1.59501i 0.122828 0.992428i \(-0.460804\pi\)
0.798054 0.602586i \(-0.205863\pi\)
\(348\) 0 0
\(349\) 1.62645e10i 1.09633i 0.836372 + 0.548163i \(0.184673\pi\)
−0.836372 + 0.548163i \(0.815327\pi\)
\(350\) 0 0
\(351\) 1.78858e9 0.117836
\(352\) 0 0
\(353\) −1.52579e10 8.80916e9i −0.982644 0.567330i −0.0795766 0.996829i \(-0.525357\pi\)
−0.903067 + 0.429499i \(0.858690\pi\)
\(354\) 0 0
\(355\) −9.49232e7 + 5.48040e7i −0.00597667 + 0.00345063i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −2.01184e9 3.48461e9i −0.121120 0.209786i 0.799090 0.601212i \(-0.205315\pi\)
−0.920210 + 0.391426i \(0.871982\pi\)
\(360\) 0 0
\(361\) −2.38884e9 + 4.13759e9i −0.140656 + 0.243623i
\(362\) 0 0
\(363\) 8.96414e9i 0.516276i
\(364\) 0 0
\(365\) 4.10628e8 0.0231354
\(366\) 0 0
\(367\) 4.78514e9 + 2.76270e9i 0.263773 + 0.152289i 0.626055 0.779779i \(-0.284669\pi\)
−0.362281 + 0.932069i \(0.618002\pi\)
\(368\) 0 0
\(369\) −1.22457e10 + 7.07005e9i −0.660507 + 0.381344i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 3.60547e9 + 6.24485e9i 0.186263 + 0.322617i 0.944001 0.329942i \(-0.107029\pi\)
−0.757739 + 0.652558i \(0.773696\pi\)
\(374\) 0 0
\(375\) −1.03724e9 + 1.79656e9i −0.0524512 + 0.0908481i
\(376\) 0 0
\(377\) 1.56560e10i 0.775025i
\(378\) 0 0
\(379\) 3.64299e10 1.76563 0.882817 0.469717i \(-0.155644\pi\)
0.882817 + 0.469717i \(0.155644\pi\)
\(380\) 0 0
\(381\) 3.44098e10 + 1.98665e10i 1.63298 + 0.942804i
\(382\) 0 0
\(383\) 1.76564e9 1.01939e9i 0.0820554 0.0473747i −0.458411 0.888740i \(-0.651581\pi\)
0.540466 + 0.841366i \(0.318248\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 1.20078e10 + 2.07982e10i 0.535329 + 0.927218i
\(388\) 0 0
\(389\) −1.65407e10 + 2.86493e10i −0.722362 + 1.25117i 0.237688 + 0.971342i \(0.423610\pi\)
−0.960050 + 0.279827i \(0.909723\pi\)
\(390\) 0 0
\(391\) 1.30373e9i 0.0557801i
\(392\) 0 0
\(393\) 3.93144e10 1.64809
\(394\) 0 0
\(395\) −1.11160e9 6.41785e8i −0.0456627 0.0263634i
\(396\) 0 0
\(397\) 4.11682e9 2.37684e9i 0.165729 0.0956839i −0.414841 0.909894i \(-0.636163\pi\)
0.580571 + 0.814210i \(0.302830\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −1.58852e10 2.75141e10i −0.614351 1.06409i −0.990498 0.137527i \(-0.956085\pi\)
0.376147 0.926560i \(-0.377249\pi\)
\(402\) 0 0
\(403\) 5.19597e9 8.99968e9i 0.196991 0.341198i
\(404\) 0 0
\(405\) 1.17397e9i 0.0436352i
\(406\) 0 0
\(407\) 3.35984e10 1.22445
\(408\) 0 0
\(409\) −2.93924e10 1.69697e10i −1.05037 0.606430i −0.127615 0.991824i \(-0.540732\pi\)
−0.922752 + 0.385394i \(0.874066\pi\)
\(410\) 0 0
\(411\) 1.25144e10 7.22518e9i 0.438573 0.253210i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 5.21144e8 + 9.02647e8i 0.0175697 + 0.0304317i
\(416\) 0 0
\(417\) −3.19125e10 + 5.52740e10i −1.05540 + 1.82800i
\(418\) 0 0
\(419\) 4.35642e10i 1.41343i 0.707499 + 0.706714i \(0.249823\pi\)
−0.707499 + 0.706714i \(0.750177\pi\)
\(420\) 0 0
\(421\) 3.95300e10 1.25834 0.629170 0.777267i \(-0.283395\pi\)
0.629170 + 0.777267i \(0.283395\pi\)
\(422\) 0 0
\(423\) 4.57519e10 + 2.64148e10i 1.42905 + 0.825062i
\(424\) 0 0
\(425\) −4.61148e9 + 2.66244e9i −0.141347 + 0.0816064i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 1.02589e10 + 1.77689e10i 0.302879 + 0.524602i
\(430\) 0 0
\(431\) 1.59834e10 2.76840e10i 0.463190 0.802268i −0.535928 0.844264i \(-0.680038\pi\)
0.999118 + 0.0419955i \(0.0133715\pi\)
\(432\) 0 0
\(433\) 1.48533e10i 0.422544i 0.977427 + 0.211272i \(0.0677606\pi\)
−0.977427 + 0.211272i \(0.932239\pi\)
\(434\) 0 0
\(435\) 2.57333e9 0.0718684
\(436\) 0 0
\(437\) 9.13698e9 + 5.27524e9i 0.250540 + 0.144649i
\(438\) 0 0
\(439\) 3.33751e10 1.92691e10i 0.898597 0.518805i 0.0218522 0.999761i \(-0.493044\pi\)
0.876745 + 0.480956i \(0.159710\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 1.28056e10 + 2.21799e10i 0.332494 + 0.575896i 0.983000 0.183605i \(-0.0587767\pi\)
−0.650506 + 0.759501i \(0.725443\pi\)
\(444\) 0 0
\(445\) −9.25018e8 + 1.60218e9i −0.0235890 + 0.0408574i
\(446\) 0 0
\(447\) 2.91018e10i 0.728936i
\(448\) 0 0
\(449\) 4.06129e10 0.999260 0.499630 0.866239i \(-0.333469\pi\)
0.499630 + 0.866239i \(0.333469\pi\)
\(450\) 0 0
\(451\) 2.54112e10 + 1.46711e10i 0.614212 + 0.354616i
\(452\) 0 0
\(453\) −5.06784e10 + 2.92592e10i −1.20345 + 0.694815i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −2.40656e10 4.16829e10i −0.551737 0.955637i −0.998149 0.0608093i \(-0.980632\pi\)
0.446412 0.894827i \(-0.352701\pi\)
\(458\) 0 0
\(459\) 7.55171e8 1.30800e9i 0.0170135 0.0294683i
\(460\) 0 0
\(461\) 3.22835e10i 0.714787i −0.933954 0.357394i \(-0.883665\pi\)
0.933954 0.357394i \(-0.116335\pi\)
\(462\) 0 0
\(463\) −4.05811e10 −0.883080 −0.441540 0.897242i \(-0.645568\pi\)
−0.441540 + 0.897242i \(0.645568\pi\)
\(464\) 0 0
\(465\) −1.47925e9 8.54044e8i −0.0316395 0.0182670i
\(466\) 0 0
\(467\) −1.16899e10 + 6.74919e9i −0.245779 + 0.141900i −0.617830 0.786312i \(-0.711988\pi\)
0.372051 + 0.928212i \(0.378655\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 3.49699e9 + 6.05696e9i 0.0710575 + 0.123075i
\(472\) 0 0
\(473\) 2.49176e10 4.31586e10i 0.497808 0.862229i
\(474\) 0 0
\(475\) 4.30920e10i 0.846490i
\(476\) 0 0
\(477\) −1.85009e10 −0.357371
\(478\) 0 0
\(479\) −1.95583e10 1.12920e10i −0.371526 0.214500i 0.302599 0.953118i \(-0.402146\pi\)
−0.674125 + 0.738618i \(0.735479\pi\)
\(480\) 0 0
\(481\) −4.08017e10 + 2.35569e10i −0.762251 + 0.440086i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −2.81161e8 4.86985e8i −0.00508146 0.00880134i
\(486\) 0 0
\(487\) 2.09348e10 3.62602e10i 0.372180 0.644635i −0.617720 0.786398i \(-0.711944\pi\)
0.989901 + 0.141763i \(0.0452770\pi\)
\(488\) 0 0
\(489\) 6.43557e10i 1.12552i
\(490\) 0 0
\(491\) −4.04271e10 −0.695580 −0.347790 0.937573i \(-0.613068\pi\)
−0.347790 + 0.937573i \(0.613068\pi\)
\(492\) 0 0
\(493\) 1.14493e10 + 6.61027e9i 0.193817 + 0.111900i
\(494\) 0 0
\(495\) 1.33918e9 7.73176e8i 0.0223058 0.0128783i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −5.29476e10 9.17080e10i −0.853973 1.47912i −0.877594 0.479404i \(-0.840853\pi\)
0.0236213 0.999721i \(-0.492480\pi\)
\(500\) 0 0
\(501\) −4.15501e10 + 7.19669e10i −0.659510 + 1.14231i
\(502\) 0 0
\(503\) 4.31315e9i 0.0673786i 0.999432 + 0.0336893i \(0.0107257\pi\)
−0.999432 + 0.0336893i \(0.989274\pi\)
\(504\) 0 0
\(505\) 2.26188e9 0.0347780
\(506\) 0 0
\(507\) 5.28467e10 + 3.05110e10i 0.799808 + 0.461770i
\(508\) 0 0
\(509\) −6.95245e10 + 4.01400e10i −1.03578 + 0.598007i −0.918635 0.395108i \(-0.870707\pi\)
−0.117144 + 0.993115i \(0.537374\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −6.11127e9 1.05850e10i −0.0882393 0.152835i
\(514\) 0 0
\(515\) −1.75135e9 + 3.03342e9i −0.0248968 + 0.0431225i
\(516\) 0 0
\(517\) 1.09628e11i 1.53447i
\(518\) 0 0
\(519\) −1.66659e11 −2.29699
\(520\) 0 0
\(521\) −1.12411e11 6.49004e10i −1.52566 0.880838i −0.999537 0.0304279i \(-0.990313\pi\)
−0.526120 0.850410i \(-0.676354\pi\)
\(522\) 0 0
\(523\) 3.98775e10 2.30233e10i 0.532992 0.307723i −0.209242 0.977864i \(-0.567100\pi\)
0.742234 + 0.670141i \(0.233766\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −4.38768e9 7.59968e9i −0.0568843 0.0985264i
\(528\) 0 0
\(529\) 3.45957e10 5.99215e10i 0.441773 0.765174i
\(530\) 0 0
\(531\) 7.87446e9i 0.0990473i
\(532\) 0 0
\(533\) −4.11456e10 −0.509817
\(534\) 0 0
\(535\) −9.64534e8 5.56874e8i −0.0117734 0.00679738i
\(536\) 0 0
\(537\) −3.76887e9 + 2.17596e9i −0.0453226 + 0.0261670i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 7.00454e10 + 1.21322e11i 0.817693 + 1.41629i 0.907378 + 0.420316i \(0.138081\pi\)
−0.0896847 + 0.995970i \(0.528586\pi\)
\(542\) 0 0
\(543\) 5.15145e10 8.92257e10i 0.592557 1.02634i
\(544\) 0 0
\(545\) 1.09496e9i 0.0124111i
\(546\) 0 0
\(547\) −1.68525e10 −0.188241 −0.0941207 0.995561i \(-0.530004\pi\)
−0.0941207 + 0.995561i \(0.530004\pi\)
\(548\) 0 0
\(549\) −5.43939e10 3.14044e10i −0.598771 0.345701i
\(550\) 0 0
\(551\) 9.26544e10 5.34940e10i 1.00522 0.580362i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 3.87197e9 + 6.70644e9i 0.0408093 + 0.0706839i
\(556\) 0 0
\(557\) −1.97581e10 + 3.42220e10i −0.205269 + 0.355536i −0.950218 0.311585i \(-0.899140\pi\)
0.744949 + 0.667121i \(0.232474\pi\)
\(558\) 0 0
\(559\) 6.98820e10i 0.715679i
\(560\) 0 0
\(561\) 1.73259e10 0.174922
\(562\) 0 0
\(563\) −9.52435e9 5.49889e9i −0.0947986 0.0547320i 0.451851 0.892093i \(-0.350764\pi\)
−0.546650 + 0.837361i \(0.684097\pi\)
\(564\) 0 0
\(565\) 6.71497e9 3.87689e9i 0.0658947 0.0380443i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 2.74390e10 + 4.75257e10i 0.261769 + 0.453398i 0.966712 0.255866i \(-0.0823607\pi\)
−0.704943 + 0.709264i \(0.749027\pi\)
\(570\) 0 0
\(571\) −7.04519e9 + 1.22026e10i −0.0662748 + 0.114791i −0.897259 0.441505i \(-0.854445\pi\)
0.830984 + 0.556296i \(0.187778\pi\)
\(572\) 0 0
\(573\) 2.41133e11i 2.23686i
\(574\) 0 0
\(575\) −3.72477e10 −0.340744
\(576\) 0 0
\(577\) −1.31690e11 7.60313e10i −1.18809 0.685945i −0.230219 0.973139i \(-0.573944\pi\)
−0.957872 + 0.287194i \(0.907277\pi\)
\(578\) 0 0
\(579\) 2.38053e11 1.37440e11i 2.11817 1.22292i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 1.91957e10 + 3.32480e10i 0.166161 + 0.287800i
\(584\) 0 0
\(585\) −1.08419e9 + 1.87788e9i −0.00925729 + 0.0160341i
\(586\) 0 0
\(587\) 6.94891e10i 0.585281i 0.956223 + 0.292640i \(0.0945339\pi\)
−0.956223 + 0.292640i \(0.905466\pi\)
\(588\) 0 0
\(589\) −7.10151e10 −0.590051
\(590\) 0 0
\(591\) −7.45820e10 4.30600e10i −0.611342 0.352958i
\(592\) 0 0
\(593\) 4.40368e10 2.54246e10i 0.356120 0.205606i −0.311257 0.950326i \(-0.600750\pi\)
0.667378 + 0.744720i \(0.267417\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 4.19366e10 + 7.26364e10i 0.330139 + 0.571817i
\(598\) 0 0
\(599\) −6.18447e10 + 1.07118e11i −0.480392 + 0.832063i −0.999747 0.0224958i \(-0.992839\pi\)
0.519355 + 0.854558i \(0.326172\pi\)
\(600\) 0 0
\(601\) 1.28493e11i 0.984875i −0.870348 0.492437i \(-0.836106\pi\)
0.870348 0.492437i \(-0.163894\pi\)
\(602\) 0 0
\(603\) −4.01752e10 −0.303870
\(604\) 0 0
\(605\) 1.70251e9 + 9.82944e8i 0.0127077 + 0.00733681i
\(606\) 0 0
\(607\) 9.04953e10 5.22475e10i 0.666609 0.384867i −0.128181 0.991751i \(-0.540914\pi\)
0.794791 + 0.606884i \(0.207581\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 7.68632e10 + 1.33131e11i 0.551511 + 0.955244i
\(612\) 0 0
\(613\) −1.22363e11 + 2.11940e11i −0.866583 + 1.50097i −0.00111547 + 0.999999i \(0.500355\pi\)
−0.865467 + 0.500966i \(0.832978\pi\)
\(614\) 0 0
\(615\) 6.76296e9i 0.0472755i
\(616\) 0 0
\(617\) 1.19891e11 0.827268 0.413634 0.910443i \(-0.364259\pi\)
0.413634 + 0.910443i \(0.364259\pi\)
\(618\) 0 0
\(619\) −6.14066e10 3.54531e10i −0.418266 0.241486i 0.276069 0.961138i \(-0.410968\pi\)
−0.694335 + 0.719652i \(0.744301\pi\)
\(620\) 0 0
\(621\) 9.14946e9 5.28244e9i 0.0615218 0.0355196i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −7.59527e10 1.31554e11i −0.497763 0.862151i
\(626\) 0 0
\(627\) 7.01056e10 1.21427e11i 0.453610 0.785676i
\(628\) 0 0
\(629\) 3.97847e10i 0.254164i
\(630\) 0 0
\(631\) −8.29136e9 −0.0523008 −0.0261504 0.999658i \(-0.508325\pi\)
−0.0261504 + 0.999658i \(0.508325\pi\)
\(632\) 0 0
\(633\) −2.22627e11 1.28534e11i −1.38664 0.800577i
\(634\) 0 0
\(635\) 7.54627e9 4.35684e9i 0.0464128 0.0267964i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −1.26132e10 2.18467e10i −0.0756521 0.131033i
\(640\) 0 0
\(641\) 1.06154e11 1.83864e11i 0.628788 1.08909i −0.359007 0.933335i \(-0.616885\pi\)
0.987795 0.155758i \(-0.0497821\pi\)
\(642\) 0 0
\(643\) 1.95015e11i 1.14084i −0.821354 0.570419i \(-0.806781\pi\)
0.821354 0.570419i \(-0.193219\pi\)
\(644\) 0 0
\(645\) 1.14863e10 0.0663652
\(646\) 0 0
\(647\) 5.79725e10 + 3.34705e10i 0.330830 + 0.191005i 0.656210 0.754579i \(-0.272159\pi\)
−0.325379 + 0.945584i \(0.605492\pi\)
\(648\) 0 0
\(649\) 1.41512e10 8.17019e9i 0.0797653 0.0460525i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 1.10311e11 + 1.91064e11i 0.606687 + 1.05081i 0.991782 + 0.127936i \(0.0408353\pi\)
−0.385095 + 0.922877i \(0.625831\pi\)
\(654\) 0 0
\(655\) 4.31094e9 7.46677e9i 0.0234211 0.0405665i
\(656\) 0 0
\(657\) 9.45064e10i 0.507224i
\(658\) 0 0
\(659\) −3.45078e11 −1.82968 −0.914840 0.403816i \(-0.867684\pi\)
−0.914840 + 0.403816i \(0.867684\pi\)
\(660\) 0 0
\(661\) 2.37254e11 + 1.36978e11i 1.24282 + 0.717540i 0.969667 0.244431i \(-0.0786012\pi\)
0.273150 + 0.961972i \(0.411935\pi\)
\(662\) 0 0
\(663\) −2.10405e10 + 1.21478e10i −0.108894 + 0.0628698i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 4.62390e10 + 8.00883e10i 0.233617 + 0.404637i
\(668\) 0 0
\(669\) −8.78419e10 + 1.52147e11i −0.438528 + 0.759553i
\(670\) 0 0
\(671\) 1.30335e11i 0.642941i
\(672\) 0 0
\(673\) 9.43930e10 0.460129 0.230065 0.973175i \(-0.426106\pi\)
0.230065 + 0.973175i \(0.426106\pi\)
\(674\) 0 0
\(675\) 3.73697e10 + 2.15754e10i 0.180013 + 0.103931i
\(676\) 0 0
\(677\) −2.53956e11 + 1.46622e11i −1.20894 + 0.697980i −0.962527 0.271185i \(-0.912584\pi\)
−0.246410 + 0.969166i \(0.579251\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −2.27357e11 3.93794e11i −1.05711 1.83097i
\(682\) 0 0
\(683\) 1.62775e11 2.81935e11i 0.748006 1.29558i −0.200771 0.979638i \(-0.564345\pi\)
0.948777 0.315946i \(-0.102322\pi\)
\(684\) 0 0
\(685\) 3.16905e9i 0.0143935i
\(686\) 0 0
\(687\) 1.42089e11 0.637873
\(688\) 0 0
\(689\) −4.66223e10 2.69174e10i −0.206879 0.119442i
\(690\) 0 0
\(691\) −1.37818e11 + 7.95694e10i −0.604498 + 0.349007i −0.770809 0.637066i \(-0.780148\pi\)
0.166311 + 0.986073i \(0.446814\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 6.99859e9 + 1.21219e10i 0.0299965 + 0.0519555i
\(696\) 0 0
\(697\) −1.73725e10 + 3.00900e10i −0.0736089 + 0.127494i
\(698\) 0 0
\(699\) 1.33766e11i 0.560322i
\(700\) 0 0
\(701\) −2.81697e11 −1.16657 −0.583284 0.812269i \(-0.698232\pi\)
−0.583284 + 0.812269i \(0.698232\pi\)
\(702\) 0 0
\(703\) 2.78826e11 + 1.60980e11i 1.14159 + 0.659099i
\(704\) 0 0
\(705\) 2.18823e10 1.26338e10i 0.0885802 0.0511418i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −1.27876e11 2.21487e11i −0.506062 0.876525i −0.999975 0.00701367i \(-0.997767\pi\)
0.493914 0.869511i \(-0.335566\pi\)
\(710\) 0 0
\(711\) 1.47707e11 2.55837e11i 0.577994 1.00112i
\(712\) 0 0
\(713\) 6.13838e10i 0.237517i
\(714\) 0 0
\(715\) 4.49965e9 0.0172169
\(716\) 0 0
\(717\) 1.13303e11 + 6.54152e10i 0.428709 + 0.247515i
\(718\) 0 0
\(719\) −3.07636e11 + 1.77614e11i −1.15112 + 0.664601i −0.949161 0.314792i \(-0.898065\pi\)
−0.201962 + 0.979393i \(0.564732\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −2.38234e11 4.12634e11i −0.871868 1.51012i
\(724\) 0 0
\(725\) −1.88857e11 + 3.27109e11i −0.683566 + 1.18397i
\(726\) 0 0
\(727\) 7.85098e10i 0.281052i −0.990077 0.140526i \(-0.955121\pi\)
0.990077 0.140526i \(-0.0448793\pi\)
\(728\) 0 0
\(729\) 1.90291e11 0.673764
\(730\) 0 0
\(731\) 5.11051e10 + 2.95056e10i 0.178976 + 0.103332i
\(732\) 0 0
\(733\) −1.10682e11 + 6.39023e10i −0.383408 + 0.221361i −0.679300 0.733861i \(-0.737717\pi\)
0.295892 + 0.955221i \(0.404383\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 4.16840e10 + 7.21988e10i 0.141286 + 0.244715i
\(738\) 0 0
\(739\) −1.04862e11 + 1.81627e11i −0.351594 + 0.608979i −0.986529 0.163587i \(-0.947694\pi\)
0.634935 + 0.772566i \(0.281027\pi\)
\(740\) 0 0
\(741\) 1.96613e11i 0.652137i
\(742\) 0 0
\(743\) 5.88745e11 1.93184 0.965922 0.258833i \(-0.0833380\pi\)
0.965922 + 0.258833i \(0.0833380\pi\)
\(744\) 0 0
\(745\) 5.52714e9 + 3.19109e9i 0.0179422 + 0.0103589i
\(746\) 0 0
\(747\) −2.07745e11 + 1.19942e11i −0.667188 + 0.385201i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 1.60439e11 + 2.77889e11i 0.504372 + 0.873598i 0.999987 + 0.00505549i \(0.00160922\pi\)
−0.495615 + 0.868542i \(0.665057\pi\)
\(752\) 0 0
\(753\) 1.05558e11 1.82833e11i 0.328332 0.568688i
\(754\) 0 0
\(755\) 1.28334e10i 0.0394961i
\(756\) 0 0
\(757\) −2.41933e11 −0.736735 −0.368368 0.929680i \(-0.620083\pi\)
−0.368368 + 0.929680i \(0.620083\pi\)
\(758\) 0 0
\(759\) 1.04958e11 + 6.05977e10i 0.316264 + 0.182595i
\(760\) 0 0
\(761\) −3.40642e11 + 1.96670e11i −1.01569 + 0.586407i −0.912852 0.408292i \(-0.866125\pi\)
−0.102835 + 0.994698i \(0.532791\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 9.15536e8 + 1.58575e9i 0.00267319 + 0.00463010i
\(766\) 0 0
\(767\) −1.14567e10 + 1.98437e10i −0.0331039 + 0.0573377i
\(768\) 0 0
\(769\) 6.91982e11i 1.97874i 0.145411 + 0.989371i \(0.453549\pi\)
−0.145411 + 0.989371i \(0.546451\pi\)
\(770\) 0 0
\(771\) 7.95485e11 2.25120
\(772\) 0 0
\(773\) 3.40927e11 + 1.96835e11i 0.954869 + 0.551294i 0.894590 0.446887i \(-0.147468\pi\)
0.0602792 + 0.998182i \(0.480801\pi\)
\(774\) 0 0
\(775\) 2.17124e11 1.25357e11i 0.601868 0.347489i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 1.40588e11 + 2.43505e11i 0.381766 + 0.661239i
\(780\) 0 0
\(781\) −2.61738e10 + 4.53343e10i −0.0703497 + 0.121849i
\(782\) 0 0
\(783\) 1.07134e11i 0.285023i
\(784\) 0 0
\(785\) 1.53382e9 0.00403920
\(786\) 0 0
\(787\) 2.91851e11 + 1.68500e11i 0.760786 + 0.439240i 0.829578 0.558391i \(-0.188581\pi\)
−0.0687921 + 0.997631i \(0.521915\pi\)
\(788\) 0 0
\(789\) 3.75627e11 2.16868e11i 0.969278 0.559613i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −9.13820e10 1.58278e11i −0.231083 0.400247i
\(794\) 0 0
\(795\) −4.42433e9 + 7.66316e9i −0.0110759 + 0.0191840i
\(796\) 0 0
\(797\) 5.26594e11i 1.30510i 0.757747 + 0.652548i \(0.226300\pi\)
−0.757747 + 0.652548i \(0.773700\pi\)
\(798\) 0 0
\(799\) 1.29813e11 0.318515
\(800\) 0 0
\(801\) −3.68743e11 2.12894e11i −0.895763 0.517169i
\(802\) 0 0
\(803\) 1.69837e11 9.80557e10i 0.408480 0.235836i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −2.26382e11 3.92105e11i −0.533762 0.924504i
\(808\) 0 0
\(809\) −2.72962e11 + 4.72784e11i −0.637247 + 1.10374i 0.348787 + 0.937202i \(0.386594\pi\)
−0.986034 + 0.166543i \(0.946740\pi\)
\(810\) 0 0
\(811\) 4.26131e11i 0.985054i −0.870297 0.492527i \(-0.836073\pi\)
0.870297 0.492527i \(-0.163927\pi\)
\(812\) 0 0
\(813\) 7.74140e11 1.77197
\(814\) 0 0
\(815\) −1.22227e10 7.05679e9i −0.0277037 0.0159947i
\(816\) 0 0
\(817\) 4.13571e11 2.38776e11i 0.928244 0.535922i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 4.32999e11 + 7.49977e11i 0.953047 + 1.65073i 0.738775 + 0.673952i \(0.235405\pi\)
0.214272 + 0.976774i \(0.431262\pi\)
\(822\) 0 0
\(823\) 2.34123e10 4.05513e10i 0.0510323 0.0883905i −0.839381 0.543544i \(-0.817082\pi\)
0.890413 + 0.455153i \(0.150416\pi\)
\(824\) 0 0
\(825\) 4.95005e11i 1.06855i
\(826\) 0 0
\(827\) 2.16092e11 0.461974 0.230987 0.972957i \(-0.425805\pi\)
0.230987 + 0.972957i \(0.425805\pi\)
\(828\) 0 0
\(829\) 6.36661e11 + 3.67576e11i 1.34800 + 0.778268i 0.987966 0.154671i \(-0.0494317\pi\)
0.360034 + 0.932939i \(0.382765\pi\)
\(830\) 0 0
\(831\) −1.96435e11 + 1.13412e11i −0.411923 + 0.237824i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 9.11219e9 + 1.57828e10i 0.0187446 + 0.0324666i
\(836\) 0 0
\(837\) −3.55560e10 + 6.15848e10i −0.0724455 + 0.125479i
\(838\) 0 0
\(839\) 6.65490e11i 1.34306i 0.740979 + 0.671528i \(0.234362\pi\)
−0.740979 + 0.671528i \(0.765638\pi\)
\(840\) 0 0
\(841\) 4.37534e11 0.874637
\(842\) 0 0
\(843\) −1.00710e10 5.81451e9i −0.0199418 0.0115134i
\(844\) 0 0
\(845\) 1.15896e10 6.69125e9i 0.0227322 0.0131244i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −3.63703e11 6.29952e11i −0.700029 1.21249i
\(850\) 0 0
\(851\) −1.39147e11 + 2.41010e11i −0.265312 + 0.459534i
\(852\) 0 0
\(853\) 7.76989e11i 1.46764i −0.679345 0.733819i \(-0.737736\pi\)
0.679345 0.733819i \(-0.262264\pi\)
\(854\) 0 0
\(855\) 1.48181e10 0.0277285
\(856\) 0 0
\(857\) −4.27209e11 2.46649e11i −0.791986 0.457253i 0.0486755 0.998815i \(-0.484500\pi\)
−0.840661 + 0.541562i \(0.817833\pi\)
\(858\) 0 0
\(859\) 5.33204e10 3.07845e10i 0.0979311 0.0565406i −0.450235 0.892910i \(-0.648660\pi\)
0.548166 + 0.836370i \(0.315326\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 5.02953e11 + 8.71140e11i 0.906743 + 1.57053i 0.818560 + 0.574421i \(0.194773\pi\)
0.0881834 + 0.996104i \(0.471894\pi\)
\(864\) 0 0
\(865\) −1.82747e10 + 3.16527e10i −0.0326426 + 0.0565387i
\(866\) 0 0
\(867\) 7.47355e11i 1.32267i
\(868\) 0 0
\(869\) −6.13019e11 −1.07497
\(870\) 0 0
\(871\) −1.01242e11 5.84519e10i −0.175908 0.101561i
\(872\) 0 0
\(873\) 1.12080e11 6.47094e10i 0.192962 0.111407i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −1.26686e10 2.19427e10i −0.0214156 0.0370929i 0.855119 0.518432i \(-0.173484\pi\)
−0.876535 + 0.481339i \(0.840151\pi\)
\(878\) 0 0
\(879\) −1.87221e11 + 3.24277e11i −0.313617 + 0.543201i
\(880\) 0 0
\(881\) 3.46215e11i 0.574701i 0.957825 + 0.287351i \(0.0927745\pi\)
−0.957825 + 0.287351i \(0.907225\pi\)
\(882\) 0 0
\(883\) 1.74934e11 0.287761 0.143881 0.989595i \(-0.454042\pi\)
0.143881 + 0.989595i \(0.454042\pi\)
\(884\) 0 0
\(885\) 3.26164e9 + 1.88311e9i 0.00531695 + 0.00306974i
\(886\) 0 0
\(887\) −7.46608e11 + 4.31055e11i −1.20614 + 0.696366i −0.961914 0.273352i \(-0.911868\pi\)
−0.244228 + 0.969718i \(0.578534\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −2.80338e11 4.85559e11i −0.444806 0.770427i
\(892\) 0 0
\(893\) 5.25258e11 9.09774e11i 0.825975 1.43063i
\(894\) 0 0
\(895\) 9.54402e8i 0.00148744i
\(896\) 0 0
\(897\) −1.69948e11 −0.262510
\(898\) 0 0
\(899\) −5.39073e11 3.11234e11i −0.825294 0.476483i
\(900\) 0 0
\(901\) −3.93697e10 + 2.27301e10i −0.0597397 + 0.0344907i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −1.12974e10 1.95677e10i −0.0168417 0.0291706i
\(906\) 0 0
\(907\) −1.32062e11 + 2.28738e11i −0.195141 + 0.337994i −0.946947 0.321391i \(-0.895850\pi\)
0.751806 + 0.659384i \(0.229183\pi\)
\(908\) 0 0
\(909\) 5.20575e11i 0.762478i
\(910\) 0 0
\(911\) −7.18346e11 −1.04294 −0.521471 0.853269i \(-0.674617\pi\)
−0.521471 + 0.853269i \(0.674617\pi\)
\(912\) 0 0
\(913\) 4.31094e11 + 2.48892e11i 0.620425 + 0.358202i
\(914\) 0 0
\(915\) −2.60157e10 + 1.50202e10i −0.0371151 + 0.0214284i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −3.18816e11 5.52206e11i −0.446970 0.774175i 0.551217 0.834362i \(-0.314164\pi\)
−0.998187 + 0.0601868i \(0.980830\pi\)
\(920\) 0 0
\(921\) 5.55897e11 9.62843e11i 0.772603 1.33819i
\(922\) 0 0
\(923\) 7.34049e10i 0.101139i
\(924\) 0 0
\(925\) −1.13666e12 −1.55261
\(926\) 0 0
\(927\) −6.98145e11 4.03074e11i −0.945424 0.545841i
\(928\) 0 0
\(929\) −1.19209e11 + 6.88253e10i −0.160046 + 0.0924028i −0.577884 0.816119i \(-0.696121\pi\)
0.417838 + 0.908522i \(0.362788\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 5.12736e10 + 8.88084e10i 0.0676655 + 0.117200i
\(934\) 0 0
\(935\) 1.89984e9 3.29062e9i 0.00248583 0.00430558i
\(936\) 0 0
\(937\) 1.07909e12i 1.39990i −0.714191 0.699951i \(-0.753205\pi\)
0.714191 0.699951i \(-0.246795\pi\)
\(938\) 0 0
\(939\) −1.51521e12 −1.94900
\(940\) 0 0
\(941\) 6.31889e11 + 3.64821e11i 0.805902 + 0.465288i 0.845531 0.533927i \(-0.179284\pi\)
−0.0396289 + 0.999214i \(0.512618\pi\)
\(942\) 0 0
\(943\) −2.10480e11 + 1.21521e11i −0.266173 + 0.153675i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 2.00302e11 + 3.46933e11i 0.249049 + 0.431366i 0.963262 0.268562i \(-0.0865485\pi\)
−0.714213 + 0.699928i \(0.753215\pi\)
\(948\) 0 0
\(949\) −1.37500e11 + 2.38157e11i −0.169526 + 0.293628i
\(950\) 0 0
\(951\) 1.33448e12i 1.63151i
\(952\) 0 0
\(953\) −2.84049e11 −0.344367 −0.172183 0.985065i \(-0.555082\pi\)
−0.172183 + 0.985065i \(0.555082\pi\)
\(954\) 0 0
\(955\) −4.57971e10 2.64409e10i −0.0550585 0.0317880i
\(956\) 0 0
\(957\) 1.06434e12 6.14496e11i 1.26891 0.732607i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −2.19859e11 3.80807e11i −0.257781 0.446490i
\(962\) 0 0
\(963\) 1.28165e11 2.21988e11i 0.149027 0.258122i
\(964\) 0 0
\(965\) 6.02828e10i 0.0695160i
\(966\) 0 0
\(967\) −5.13167e11 −0.586885 −0.293442 0.955977i \(-0.594801\pi\)
−0.293442 + 0.955977i \(0.594801\pi\)
\(968\) 0 0
\(969\) 1.43784e11 + 8.30138e10i 0.163086 + 0.0941575i
\(970\) 0 0
\(971\) −3.29471e11 + 1.90220e11i −0.370629 + 0.213983i −0.673733 0.738975i \(-0.735310\pi\)
0.303104 + 0.952957i \(0.401977\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −3.47064e11 6.01132e11i −0.384052 0.665198i
\(976\) 0 0
\(977\) 7.42574e11 1.28618e12i 0.815007 1.41163i −0.0943151 0.995542i \(-0.530066\pi\)
0.909323 0.416092i \(-0.136601\pi\)
\(978\) 0 0
\(979\) 8.83557e11i 0.961842i
\(980\) 0 0
\(981\) −2.52005e11 −0.272103
\(982\) 0 0
\(983\) −1.27994e12 7.38976e11i −1.37081 0.791437i −0.379779 0.925077i \(-0.624000\pi\)
−0.991030 + 0.133641i \(0.957333\pi\)
\(984\) 0 0
\(985\) −1.63563e10 + 9.44330e9i −0.0173756 + 0.0100318i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 2.06392e11 + 3.57481e11i 0.215729 + 0.373653i
\(990\) 0 0
\(991\) −3.22057e11 + 5.57819e11i −0.333917 + 0.578361i −0.983276 0.182121i \(-0.941704\pi\)
0.649359 + 0.760482i \(0.275037\pi\)
\(992\) 0 0
\(993\) 1.82879e12i 1.88090i
\(994\) 0 0
\(995\) 1.83939e10 0.0187664
\(996\) 0 0
\(997\) −7.72684e11 4.46109e11i −0.782026 0.451503i 0.0551215 0.998480i \(-0.482445\pi\)
−0.837148 + 0.546976i \(0.815779\pi\)
\(998\) 0 0
\(999\) 2.79206e11 1.61200e11i 0.280326 0.161846i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 196.9.h.c.129.13 32
7.2 even 3 inner 196.9.h.c.117.4 32
7.3 odd 6 196.9.b.b.97.13 yes 16
7.4 even 3 196.9.b.b.97.4 16
7.5 odd 6 inner 196.9.h.c.117.13 32
7.6 odd 2 inner 196.9.h.c.129.4 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
196.9.b.b.97.4 16 7.4 even 3
196.9.b.b.97.13 yes 16 7.3 odd 6
196.9.h.c.117.4 32 7.2 even 3 inner
196.9.h.c.117.13 32 7.5 odd 6 inner
196.9.h.c.129.4 32 7.6 odd 2 inner
196.9.h.c.129.13 32 1.1 even 1 trivial