| L(s) = 1 | + (0.5 + 0.866i)2-s + (−0.499 + 0.866i)4-s + (−1.30 + 2.26i)5-s + (2.56 + 4.44i)7-s − 0.999·8-s − 2.61·10-s + (1.23 + 2.14i)11-s + (−1.90 + 3.29i)13-s + (−2.56 + 4.44i)14-s + (−0.5 − 0.866i)16-s − 2.41·17-s + 5.05·19-s + (−1.30 − 2.26i)20-s + (−1.23 + 2.14i)22-s + (2.85 − 4.95i)23-s + ⋯ |
| L(s) = 1 | + (0.353 + 0.612i)2-s + (−0.249 + 0.433i)4-s + (−0.583 + 1.01i)5-s + (0.970 + 1.68i)7-s − 0.353·8-s − 0.825·10-s + (0.373 + 0.646i)11-s + (−0.527 + 0.912i)13-s + (−0.686 + 1.18i)14-s + (−0.125 − 0.216i)16-s − 0.584·17-s + 1.16·19-s + (−0.291 − 0.505i)20-s + (−0.264 + 0.457i)22-s + (0.596 − 1.03i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1458 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1458 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.806457577\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.806457577\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.5 - 0.866i)T \) |
| 3 | \( 1 \) |
| good | 5 | \( 1 + (1.30 - 2.26i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (-2.56 - 4.44i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-1.23 - 2.14i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (1.90 - 3.29i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + 2.41T + 17T^{2} \) |
| 19 | \( 1 - 5.05T + 19T^{2} \) |
| 23 | \( 1 + (-2.85 + 4.95i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (1.81 + 3.13i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-2.01 + 3.48i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 1.49T + 37T^{2} \) |
| 41 | \( 1 + (-5.17 + 8.95i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.128 - 0.222i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-3.62 - 6.27i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 14.4T + 53T^{2} \) |
| 59 | \( 1 + (-1.71 + 2.96i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-4.80 - 8.32i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.63 + 2.82i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 7.55T + 71T^{2} \) |
| 73 | \( 1 - 3.93T + 73T^{2} \) |
| 79 | \( 1 + (0.482 + 0.835i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-2.20 - 3.82i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 6.51T + 89T^{2} \) |
| 97 | \( 1 + (4.64 + 8.05i)T + (-48.5 + 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.592582233509927117100055595912, −9.062206641508077856714791306357, −8.166607724981810818455275804746, −7.39784480051893612237332491953, −6.73529282175927472585852787713, −5.84618300431244096455341061922, −4.92281032236094774450245262663, −4.20303589952357377276887646243, −2.87010421136746023360656311689, −2.09489196785424228486825309386,
0.70772055085242044532541842345, 1.38736755368898708499170327175, 3.20632474210271288672407056420, 3.97270359970701645816316812302, 4.86059567784022487279040782485, 5.28920819111044389483311918899, 6.78770555853325125318500665968, 7.70822580760052398248525482864, 8.196448047083741552505192396881, 9.205942985861235595958990207025