sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1458, base_ring=CyclotomicField(6))
M = H._module
chi = DirichletCharacter(H, M([2]))
pari:[g,chi] = znchar(Mod(973,1458))
\(\chi_{1458}(487,\cdot)\)
\(\chi_{1458}(973,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\(731\) → \(e\left(\frac{1}{3}\right)\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) |
\( \chi_{ 1458 }(973, a) \) |
\(1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) |
sage:chi.jacobi_sum(n)