L(s) = 1 | + (−0.309 + 0.951i)3-s + (0.809 − 0.587i)5-s + (−0.618 − 1.90i)7-s + (−0.809 − 0.587i)9-s + (−2.42 − 1.76i)13-s + (0.309 + 0.951i)15-s + (−5.66 + 4.11i)17-s + (−1.23 + 3.80i)19-s + 1.99·21-s − 2·23-s + (−1.23 + 3.80i)25-s + (0.809 − 0.587i)27-s + (−0.927 − 2.85i)29-s + (−1.61 − 1.17i)35-s + (2.78 + 8.55i)37-s + ⋯ |
L(s) = 1 | + (−0.178 + 0.549i)3-s + (0.361 − 0.262i)5-s + (−0.233 − 0.718i)7-s + (−0.269 − 0.195i)9-s + (−0.673 − 0.489i)13-s + (0.0797 + 0.245i)15-s + (−1.37 + 0.997i)17-s + (−0.283 + 0.872i)19-s + 0.436·21-s − 0.417·23-s + (−0.247 + 0.760i)25-s + (0.155 − 0.113i)27-s + (−0.172 − 0.529i)29-s + (−0.273 − 0.198i)35-s + (0.457 + 1.40i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1452 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.859 - 0.511i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1452 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.859 - 0.511i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.5141082383\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5141082383\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.309 - 0.951i)T \) |
| 11 | \( 1 \) |
good | 5 | \( 1 + (-0.809 + 0.587i)T + (1.54 - 4.75i)T^{2} \) |
| 7 | \( 1 + (0.618 + 1.90i)T + (-5.66 + 4.11i)T^{2} \) |
| 13 | \( 1 + (2.42 + 1.76i)T + (4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (5.66 - 4.11i)T + (5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (1.23 - 3.80i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 + 2T + 23T^{2} \) |
| 29 | \( 1 + (0.927 + 2.85i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (-2.78 - 8.55i)T + (-29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (2.78 - 8.55i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 - 2T + 43T^{2} \) |
| 47 | \( 1 + (3.70 - 11.4i)T + (-38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (-10.5 - 7.64i)T + (16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (1.85 + 5.70i)T + (-47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (1.61 - 1.17i)T + (18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 + 14T + 67T^{2} \) |
| 71 | \( 1 + (-4.85 + 3.52i)T + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (1.85 + 5.70i)T + (-59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (12.9 + 9.40i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (6.47 - 4.70i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 - T + 89T^{2} \) |
| 97 | \( 1 + (5.66 + 4.11i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.971429411579498881315617444505, −9.189882089930071780056430659817, −8.282847592626553984494574353800, −7.51226455558187295553921652210, −6.40253629382417084676604779210, −5.82258648283876674398200835246, −4.65994319232331430535098804642, −4.08458013989189222189451266898, −2.93225177104937840293534712109, −1.56999119166723342952710373766,
0.19626116307114708156328443047, 2.16780138146544950222214640498, 2.56476526989992881123280227985, 4.12911715086216059904062673024, 5.15043639332901363434183075320, 5.94347447291200669239165031130, 6.90909171024328893572211765680, 7.22529732881917977518878844090, 8.622700506280142311372622815003, 9.030258546040014983298168952550