Properties

Label 2-1452-1.1-c3-0-10
Degree $2$
Conductor $1452$
Sign $1$
Analytic cond. $85.6707$
Root an. cond. $9.25585$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s − 11.7·5-s + 15.4·7-s + 9·9-s + 59.6·13-s + 35.3·15-s + 28.9·17-s − 142.·19-s − 46.4·21-s + 185·23-s + 14.2·25-s − 27·27-s − 155.·29-s + 283.·31-s − 182.·35-s − 202.·37-s − 178.·39-s + 294.·41-s − 179.·43-s − 106.·45-s − 408.·47-s − 103.·49-s − 86.9·51-s + 359.·53-s + 427.·57-s + 288.·59-s − 151.·61-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.05·5-s + 0.835·7-s + 0.333·9-s + 1.27·13-s + 0.609·15-s + 0.413·17-s − 1.72·19-s − 0.482·21-s + 1.67·23-s + 0.113·25-s − 0.192·27-s − 0.993·29-s + 1.64·31-s − 0.881·35-s − 0.898·37-s − 0.734·39-s + 1.12·41-s − 0.635·43-s − 0.351·45-s − 1.26·47-s − 0.302·49-s − 0.238·51-s + 0.931·53-s + 0.993·57-s + 0.635·59-s − 0.318·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1452 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1452 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1452\)    =    \(2^{2} \cdot 3 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(85.6707\)
Root analytic conductor: \(9.25585\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1452,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.458622106\)
\(L(\frac12)\) \(\approx\) \(1.458622106\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 3T \)
11 \( 1 \)
good5 \( 1 + 11.7T + 125T^{2} \)
7 \( 1 - 15.4T + 343T^{2} \)
13 \( 1 - 59.6T + 2.19e3T^{2} \)
17 \( 1 - 28.9T + 4.91e3T^{2} \)
19 \( 1 + 142.T + 6.85e3T^{2} \)
23 \( 1 - 185T + 1.21e4T^{2} \)
29 \( 1 + 155.T + 2.43e4T^{2} \)
31 \( 1 - 283.T + 2.97e4T^{2} \)
37 \( 1 + 202.T + 5.06e4T^{2} \)
41 \( 1 - 294.T + 6.89e4T^{2} \)
43 \( 1 + 179.T + 7.95e4T^{2} \)
47 \( 1 + 408.T + 1.03e5T^{2} \)
53 \( 1 - 359.T + 1.48e5T^{2} \)
59 \( 1 - 288.T + 2.05e5T^{2} \)
61 \( 1 + 151.T + 2.26e5T^{2} \)
67 \( 1 + 826.T + 3.00e5T^{2} \)
71 \( 1 - 139.T + 3.57e5T^{2} \)
73 \( 1 + 244.T + 3.89e5T^{2} \)
79 \( 1 + 562.T + 4.93e5T^{2} \)
83 \( 1 + 54.6T + 5.71e5T^{2} \)
89 \( 1 - 554.T + 7.04e5T^{2} \)
97 \( 1 - 144.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.859839819800511609886779653560, −8.373400095474496091276731865400, −7.59356832946126551108051340259, −6.71399591441195312222177453321, −5.89017220128086901323364753356, −4.82402181601525221324812673409, −4.19315555558748163038703205006, −3.24333162580861226190705906985, −1.70792028063166588774811413935, −0.63602624670568092084209928456, 0.63602624670568092084209928456, 1.70792028063166588774811413935, 3.24333162580861226190705906985, 4.19315555558748163038703205006, 4.82402181601525221324812673409, 5.89017220128086901323364753356, 6.71399591441195312222177453321, 7.59356832946126551108051340259, 8.373400095474496091276731865400, 8.859839819800511609886779653560

Graph of the $Z$-function along the critical line