Properties

Label 1452.4.a.m
Level $1452$
Weight $4$
Character orbit 1452.a
Self dual yes
Analytic conductor $85.671$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1452,4,Mod(1,1452)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1452.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1452, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1452 = 2^{2} \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1452.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-6,0,1,0,22] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(85.6707733283\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 132)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{5})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 3 q^{3} + (11 \beta - 5) q^{5} + ( - 4 \beta + 13) q^{7} + 9 q^{9} + ( - 14 \beta + 51) q^{13} + ( - 33 \beta + 15) q^{15} + ( - 21 \beta + 16) q^{17} + (93 \beta - 85) q^{19} + (12 \beta - 39) q^{21}+ \cdots + (11 \beta + 151) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{3} + q^{5} + 22 q^{7} + 18 q^{9} + 88 q^{13} - 3 q^{15} + 11 q^{17} - 77 q^{19} - 66 q^{21} + 370 q^{23} + 53 q^{25} - 54 q^{27} - 176 q^{29} + 99 q^{31} - 99 q^{35} - 60 q^{37} - 264 q^{39}+ \cdots + 313 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.618034
1.61803
0 −3.00000 0 −11.7984 0 15.4721 0 9.00000 0
1.2 0 −3.00000 0 12.7984 0 6.52786 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1452.4.a.m 2
11.b odd 2 1 1452.4.a.l 2
11.d odd 10 2 132.4.i.a 4
33.f even 10 2 396.4.j.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
132.4.i.a 4 11.d odd 10 2
396.4.j.a 4 33.f even 10 2
1452.4.a.l 2 11.b odd 2 1
1452.4.a.m 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1452))\):

\( T_{5}^{2} - T_{5} - 151 \) Copy content Toggle raw display
\( T_{7}^{2} - 22T_{7} + 101 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T + 3)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - T - 151 \) Copy content Toggle raw display
$7$ \( T^{2} - 22T + 101 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 88T + 1691 \) Copy content Toggle raw display
$17$ \( T^{2} - 11T - 521 \) Copy content Toggle raw display
$19$ \( T^{2} + 77T - 9329 \) Copy content Toggle raw display
$23$ \( (T - 185)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 176T + 3244 \) Copy content Toggle raw display
$31$ \( T^{2} - 99T - 52151 \) Copy content Toggle raw display
$37$ \( T^{2} + 60T - 28745 \) Copy content Toggle raw display
$41$ \( T^{2} - 374T + 23449 \) Copy content Toggle raw display
$43$ \( T^{2} - 308T - 87289 \) Copy content Toggle raw display
$47$ \( T^{2} + 743T + 136651 \) Copy content Toggle raw display
$53$ \( T^{2} - 547T + 67391 \) Copy content Toggle raw display
$59$ \( T^{2} - 601T + 90149 \) Copy content Toggle raw display
$61$ \( T^{2} - 495T - 98055 \) Copy content Toggle raw display
$67$ \( T^{2} + 743T - 69049 \) Copy content Toggle raw display
$71$ \( T^{2} - 501T + 50499 \) Copy content Toggle raw display
$73$ \( T^{2} + 1254 T + 246924 \) Copy content Toggle raw display
$79$ \( T^{2} + 374T - 106151 \) Copy content Toggle raw display
$83$ \( T^{2} + 704T + 35459 \) Copy content Toggle raw display
$89$ \( T^{2} - 618T + 34981 \) Copy content Toggle raw display
$97$ \( T^{2} - 313T + 24341 \) Copy content Toggle raw display
show more
show less