Properties

Label 2-1440-8.5-c1-0-17
Degree 22
Conductor 14401440
Sign 0.707+0.707i-0.707 + 0.707i
Analytic cond. 11.498411.4984
Root an. cond. 3.390933.39093
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·5-s − 2·7-s − 4i·11-s + 6·17-s + 4i·19-s − 4·23-s − 25-s − 6i·29-s − 10·31-s + 2i·35-s − 4i·37-s − 10·41-s − 4i·43-s − 4·47-s − 3·49-s + ⋯
L(s)  = 1  − 0.447i·5-s − 0.755·7-s − 1.20i·11-s + 1.45·17-s + 0.917i·19-s − 0.834·23-s − 0.200·25-s − 1.11i·29-s − 1.79·31-s + 0.338i·35-s − 0.657i·37-s − 1.56·41-s − 0.609i·43-s − 0.583·47-s − 0.428·49-s + ⋯

Functional equation

Λ(s)=(1440s/2ΓC(s)L(s)=((0.707+0.707i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 1440 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.707 + 0.707i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(1440s/2ΓC(s+1/2)L(s)=((0.707+0.707i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1440 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.707 + 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 14401440    =    253252^{5} \cdot 3^{2} \cdot 5
Sign: 0.707+0.707i-0.707 + 0.707i
Analytic conductor: 11.498411.4984
Root analytic conductor: 3.390933.39093
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ1440(721,)\chi_{1440} (721, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 1440, ( :1/2), 0.707+0.707i)(2,\ 1440,\ (\ :1/2),\ -0.707 + 0.707i)

Particular Values

L(1)L(1) \approx 0.84791438690.8479143869
L(12)L(\frac12) \approx 0.84791438690.8479143869
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
3 1 1
5 1+iT 1 + iT
good7 1+2T+7T2 1 + 2T + 7T^{2}
11 1+4iT11T2 1 + 4iT - 11T^{2}
13 113T2 1 - 13T^{2}
17 16T+17T2 1 - 6T + 17T^{2}
19 14iT19T2 1 - 4iT - 19T^{2}
23 1+4T+23T2 1 + 4T + 23T^{2}
29 1+6iT29T2 1 + 6iT - 29T^{2}
31 1+10T+31T2 1 + 10T + 31T^{2}
37 1+4iT37T2 1 + 4iT - 37T^{2}
41 1+10T+41T2 1 + 10T + 41T^{2}
43 1+4iT43T2 1 + 4iT - 43T^{2}
47 1+4T+47T2 1 + 4T + 47T^{2}
53 1+10iT53T2 1 + 10iT - 53T^{2}
59 1+8iT59T2 1 + 8iT - 59T^{2}
61 18iT61T2 1 - 8iT - 61T^{2}
67 1+12iT67T2 1 + 12iT - 67T^{2}
71 1+4T+71T2 1 + 4T + 71T^{2}
73 110T+73T2 1 - 10T + 73T^{2}
79 114T+79T2 1 - 14T + 79T^{2}
83 183T2 1 - 83T^{2}
89 1+14T+89T2 1 + 14T + 89T^{2}
97 1+10T+97T2 1 + 10T + 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−9.354094253682609085681039595783, −8.289424434526591841867225924358, −7.86282324019680072946234411252, −6.67565302581894547538290429185, −5.81800693973327795464505440020, −5.30241617411372266717401701421, −3.77902288694413270098235946716, −3.36046617832412111145231734701, −1.81808407337671702396876871288, −0.33172000155736559573941842711, 1.63036692113692049996276112208, 2.90385070972141966395465254389, 3.69490182960377994125609730582, 4.85440100223836599974660812731, 5.72337206167562305029026070245, 6.76630783323006265674513399981, 7.24466066830627603973922874964, 8.138988632522686263166671829296, 9.255104980425820087005714032841, 9.821829431708892956964254494006

Graph of the ZZ-function along the critical line