L(s) = 1 | − i·5-s − 2·7-s − 4i·11-s + 6·17-s + 4i·19-s − 4·23-s − 25-s − 6i·29-s − 10·31-s + 2i·35-s − 4i·37-s − 10·41-s − 4i·43-s − 4·47-s − 3·49-s + ⋯ |
L(s) = 1 | − 0.447i·5-s − 0.755·7-s − 1.20i·11-s + 1.45·17-s + 0.917i·19-s − 0.834·23-s − 0.200·25-s − 1.11i·29-s − 1.79·31-s + 0.338i·35-s − 0.657i·37-s − 1.56·41-s − 0.609i·43-s − 0.583·47-s − 0.428·49-s + ⋯ |
Λ(s)=(=(1440s/2ΓC(s)L(s)(−0.707+0.707i)Λ(2−s)
Λ(s)=(=(1440s/2ΓC(s+1/2)L(s)(−0.707+0.707i)Λ(1−s)
Degree: |
2 |
Conductor: |
1440
= 25⋅32⋅5
|
Sign: |
−0.707+0.707i
|
Analytic conductor: |
11.4984 |
Root analytic conductor: |
3.39093 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1440(721,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1440, ( :1/2), −0.707+0.707i)
|
Particular Values
L(1) |
≈ |
0.8479143869 |
L(21) |
≈ |
0.8479143869 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+iT |
good | 7 | 1+2T+7T2 |
| 11 | 1+4iT−11T2 |
| 13 | 1−13T2 |
| 17 | 1−6T+17T2 |
| 19 | 1−4iT−19T2 |
| 23 | 1+4T+23T2 |
| 29 | 1+6iT−29T2 |
| 31 | 1+10T+31T2 |
| 37 | 1+4iT−37T2 |
| 41 | 1+10T+41T2 |
| 43 | 1+4iT−43T2 |
| 47 | 1+4T+47T2 |
| 53 | 1+10iT−53T2 |
| 59 | 1+8iT−59T2 |
| 61 | 1−8iT−61T2 |
| 67 | 1+12iT−67T2 |
| 71 | 1+4T+71T2 |
| 73 | 1−10T+73T2 |
| 79 | 1−14T+79T2 |
| 83 | 1−83T2 |
| 89 | 1+14T+89T2 |
| 97 | 1+10T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.354094253682609085681039595783, −8.289424434526591841867225924358, −7.86282324019680072946234411252, −6.67565302581894547538290429185, −5.81800693973327795464505440020, −5.30241617411372266717401701421, −3.77902288694413270098235946716, −3.36046617832412111145231734701, −1.81808407337671702396876871288, −0.33172000155736559573941842711,
1.63036692113692049996276112208, 2.90385070972141966395465254389, 3.69490182960377994125609730582, 4.85440100223836599974660812731, 5.72337206167562305029026070245, 6.76630783323006265674513399981, 7.24466066830627603973922874964, 8.138988632522686263166671829296, 9.255104980425820087005714032841, 9.821829431708892956964254494006