Properties

Label 2-1440-8.5-c1-0-2
Degree $2$
Conductor $1440$
Sign $-0.707 - 0.707i$
Analytic cond. $11.4984$
Root an. cond. $3.39093$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·5-s − 2·7-s + 4i·11-s + 6·17-s − 4i·19-s − 4·23-s − 25-s + 6i·29-s − 10·31-s − 2i·35-s + 4i·37-s − 10·41-s + 4i·43-s − 4·47-s − 3·49-s + ⋯
L(s)  = 1  + 0.447i·5-s − 0.755·7-s + 1.20i·11-s + 1.45·17-s − 0.917i·19-s − 0.834·23-s − 0.200·25-s + 1.11i·29-s − 1.79·31-s − 0.338i·35-s + 0.657i·37-s − 1.56·41-s + 0.609i·43-s − 0.583·47-s − 0.428·49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1440 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.707 - 0.707i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1440 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.707 - 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1440\)    =    \(2^{5} \cdot 3^{2} \cdot 5\)
Sign: $-0.707 - 0.707i$
Analytic conductor: \(11.4984\)
Root analytic conductor: \(3.39093\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1440} (721, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1440,\ (\ :1/2),\ -0.707 - 0.707i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8479143869\)
\(L(\frac12)\) \(\approx\) \(0.8479143869\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - iT \)
good7 \( 1 + 2T + 7T^{2} \)
11 \( 1 - 4iT - 11T^{2} \)
13 \( 1 - 13T^{2} \)
17 \( 1 - 6T + 17T^{2} \)
19 \( 1 + 4iT - 19T^{2} \)
23 \( 1 + 4T + 23T^{2} \)
29 \( 1 - 6iT - 29T^{2} \)
31 \( 1 + 10T + 31T^{2} \)
37 \( 1 - 4iT - 37T^{2} \)
41 \( 1 + 10T + 41T^{2} \)
43 \( 1 - 4iT - 43T^{2} \)
47 \( 1 + 4T + 47T^{2} \)
53 \( 1 - 10iT - 53T^{2} \)
59 \( 1 - 8iT - 59T^{2} \)
61 \( 1 + 8iT - 61T^{2} \)
67 \( 1 - 12iT - 67T^{2} \)
71 \( 1 + 4T + 71T^{2} \)
73 \( 1 - 10T + 73T^{2} \)
79 \( 1 - 14T + 79T^{2} \)
83 \( 1 - 83T^{2} \)
89 \( 1 + 14T + 89T^{2} \)
97 \( 1 + 10T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.821829431708892956964254494006, −9.255104980425820087005714032841, −8.138988632522686263166671829296, −7.24466066830627603973922874964, −6.76630783323006265674513399981, −5.72337206167562305029026070245, −4.85440100223836599974660812731, −3.69490182960377994125609730582, −2.90385070972141966395465254389, −1.63036692113692049996276112208, 0.33172000155736559573941842711, 1.81808407337671702396876871288, 3.36046617832412111145231734701, 3.77902288694413270098235946716, 5.30241617411372266717401701421, 5.81800693973327795464505440020, 6.67565302581894547538290429185, 7.86282324019680072946234411252, 8.289424434526591841867225924358, 9.354094253682609085681039595783

Graph of the $Z$-function along the critical line