Properties

Label 2-141570-1.1-c1-0-115
Degree $2$
Conductor $141570$
Sign $-1$
Analytic cond. $1130.44$
Root an. cond. $33.6220$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 5-s + 7-s + 8-s + 10-s + 13-s + 14-s + 16-s − 2·17-s − 7·19-s + 20-s + 4·23-s + 25-s + 26-s + 28-s − 2·29-s − 3·31-s + 32-s − 2·34-s + 35-s + 2·37-s − 7·38-s + 40-s + 10·41-s − 13·43-s + 4·46-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.447·5-s + 0.377·7-s + 0.353·8-s + 0.316·10-s + 0.277·13-s + 0.267·14-s + 1/4·16-s − 0.485·17-s − 1.60·19-s + 0.223·20-s + 0.834·23-s + 1/5·25-s + 0.196·26-s + 0.188·28-s − 0.371·29-s − 0.538·31-s + 0.176·32-s − 0.342·34-s + 0.169·35-s + 0.328·37-s − 1.13·38-s + 0.158·40-s + 1.56·41-s − 1.98·43-s + 0.589·46-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 141570 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 141570 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(141570\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(1130.44\)
Root analytic conductor: \(33.6220\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 141570,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 - T \)
11 \( 1 \)
13 \( 1 - T \)
good7 \( 1 - T + p T^{2} \) 1.7.ab
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 7 T + p T^{2} \) 1.19.h
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 3 T + p T^{2} \) 1.31.d
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + 13 T + p T^{2} \) 1.43.n
47 \( 1 - 3 T + p T^{2} \) 1.47.ad
53 \( 1 + 4 T + p T^{2} \) 1.53.e
59 \( 1 - 3 T + p T^{2} \) 1.59.ad
61 \( 1 - 13 T + p T^{2} \) 1.61.an
67 \( 1 - 11 T + p T^{2} \) 1.67.al
71 \( 1 - 10 T + p T^{2} \) 1.71.ak
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - 15 T + p T^{2} \) 1.79.ap
83 \( 1 - 5 T + p T^{2} \) 1.83.af
89 \( 1 + 7 T + p T^{2} \) 1.89.h
97 \( 1 + 13 T + p T^{2} \) 1.97.n
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.52326814195836, −13.12739197057085, −12.80545731562286, −12.41425352751195, −11.68675216634548, −11.14358442783667, −10.94427482570011, −10.49934085006746, −9.694476081152284, −9.439218455919961, −8.648595115416052, −8.336918528776063, −7.796779029214721, −7.051531149971136, −6.596386121829153, −6.312205455232042, −5.581937512769678, −5.099026586200018, −4.704129883295371, −3.906872837065825, −3.713494671379577, −2.718326407355846, −2.321316156836392, −1.729771597950872, −1.024734760858728, 0, 1.024734760858728, 1.729771597950872, 2.321316156836392, 2.718326407355846, 3.713494671379577, 3.906872837065825, 4.704129883295371, 5.099026586200018, 5.581937512769678, 6.312205455232042, 6.596386121829153, 7.051531149971136, 7.796779029214721, 8.336918528776063, 8.648595115416052, 9.439218455919961, 9.694476081152284, 10.49934085006746, 10.94427482570011, 11.14358442783667, 11.68675216634548, 12.41425352751195, 12.80545731562286, 13.12739197057085, 13.52326814195836

Graph of the $Z$-function along the critical line