Properties

Label 2-13520-1.1-c1-0-28
Degree $2$
Conductor $13520$
Sign $-1$
Analytic cond. $107.957$
Root an. cond. $10.3902$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 5-s + 5·7-s − 2·9-s − 5·11-s + 15-s − 17-s − 3·19-s + 5·21-s − 3·23-s + 25-s − 5·27-s − 29-s − 5·33-s + 5·35-s − 7·37-s + 5·41-s − 5·43-s − 2·45-s + 12·47-s + 18·49-s − 51-s + 2·53-s − 5·55-s − 3·57-s − 11·59-s − 13·61-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.447·5-s + 1.88·7-s − 2/3·9-s − 1.50·11-s + 0.258·15-s − 0.242·17-s − 0.688·19-s + 1.09·21-s − 0.625·23-s + 1/5·25-s − 0.962·27-s − 0.185·29-s − 0.870·33-s + 0.845·35-s − 1.15·37-s + 0.780·41-s − 0.762·43-s − 0.298·45-s + 1.75·47-s + 18/7·49-s − 0.140·51-s + 0.274·53-s − 0.674·55-s − 0.397·57-s − 1.43·59-s − 1.66·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 13520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 13520 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(13520\)    =    \(2^{4} \cdot 5 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(107.957\)
Root analytic conductor: \(10.3902\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 13520,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 - T \)
13 \( 1 \)
good3 \( 1 - T + p T^{2} \) 1.3.ab
7 \( 1 - 5 T + p T^{2} \) 1.7.af
11 \( 1 + 5 T + p T^{2} \) 1.11.f
17 \( 1 + T + p T^{2} \) 1.17.b
19 \( 1 + 3 T + p T^{2} \) 1.19.d
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 + T + p T^{2} \) 1.29.b
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 - 5 T + p T^{2} \) 1.41.af
43 \( 1 + 5 T + p T^{2} \) 1.43.f
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 11 T + p T^{2} \) 1.59.l
61 \( 1 + 13 T + p T^{2} \) 1.61.n
67 \( 1 - 3 T + p T^{2} \) 1.67.ad
71 \( 1 - 13 T + p T^{2} \) 1.71.an
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 7 T + p T^{2} \) 1.89.h
97 \( 1 + 11 T + p T^{2} \) 1.97.l
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.70536780467493, −15.60849890095711, −15.30740596613991, −14.81302743928754, −14.10135036420487, −13.83033208330887, −13.39131574934631, −12.42366673760657, −12.06912929022746, −11.11085832932141, −10.83935634901124, −10.39481861060789, −9.449461151548710, −8.799788513883745, −8.316558294647184, −7.839757428514685, −7.422195246526202, −6.345909810698557, −5.542785689861175, −5.178372220270951, −4.495015474378252, −3.669334658949759, −2.527590323685143, −2.280708558558880, −1.419065693240272, 0, 1.419065693240272, 2.280708558558880, 2.527590323685143, 3.669334658949759, 4.495015474378252, 5.178372220270951, 5.542785689861175, 6.345909810698557, 7.422195246526202, 7.839757428514685, 8.316558294647184, 8.799788513883745, 9.449461151548710, 10.39481861060789, 10.83935634901124, 11.11085832932141, 12.06912929022746, 12.42366673760657, 13.39131574934631, 13.83033208330887, 14.10135036420487, 14.81302743928754, 15.30740596613991, 15.60849890095711, 16.70536780467493

Graph of the $Z$-function along the critical line