Properties

Label 2-13520-1.1-c1-0-11
Degree $2$
Conductor $13520$
Sign $1$
Analytic cond. $107.957$
Root an. cond. $10.3902$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 5-s + 3·7-s − 2·9-s − 5·11-s + 15-s + 5·17-s + 19-s + 3·21-s + 23-s + 25-s − 5·27-s − 9·29-s + 4·31-s − 5·33-s + 3·35-s − 3·37-s − 41-s + 3·43-s − 2·45-s + 8·47-s + 2·49-s + 5·51-s + 10·53-s − 5·55-s + 57-s − 3·59-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.447·5-s + 1.13·7-s − 2/3·9-s − 1.50·11-s + 0.258·15-s + 1.21·17-s + 0.229·19-s + 0.654·21-s + 0.208·23-s + 1/5·25-s − 0.962·27-s − 1.67·29-s + 0.718·31-s − 0.870·33-s + 0.507·35-s − 0.493·37-s − 0.156·41-s + 0.457·43-s − 0.298·45-s + 1.16·47-s + 2/7·49-s + 0.700·51-s + 1.37·53-s − 0.674·55-s + 0.132·57-s − 0.390·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 13520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 13520 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(13520\)    =    \(2^{4} \cdot 5 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(107.957\)
Root analytic conductor: \(10.3902\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 13520,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.900527963\)
\(L(\frac12)\) \(\approx\) \(2.900527963\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 - T \)
13 \( 1 \)
good3 \( 1 - T + p T^{2} \) 1.3.ab
7 \( 1 - 3 T + p T^{2} \) 1.7.ad
11 \( 1 + 5 T + p T^{2} \) 1.11.f
17 \( 1 - 5 T + p T^{2} \) 1.17.af
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 - T + p T^{2} \) 1.23.ab
29 \( 1 + 9 T + p T^{2} \) 1.29.j
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 3 T + p T^{2} \) 1.37.d
41 \( 1 + T + p T^{2} \) 1.41.b
43 \( 1 - 3 T + p T^{2} \) 1.43.ad
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 - 7 T + p T^{2} \) 1.61.ah
67 \( 1 - 9 T + p T^{2} \) 1.67.aj
71 \( 1 + 7 T + p T^{2} \) 1.71.h
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 15 T + p T^{2} \) 1.89.ap
97 \( 1 + 7 T + p T^{2} \) 1.97.h
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.19996811960005, −15.49209902649794, −14.90872592555520, −14.62234896527861, −13.82967186738561, −13.66318885437048, −12.92005485870577, −12.25562837435569, −11.64044329719434, −10.96111381241260, −10.57804502636371, −9.832120452302555, −9.269290720929076, −8.520197792313890, −8.020433891779465, −7.663389185229541, −6.955911321723832, −5.709904201371578, −5.520878182317374, −4.951647814955785, −3.938873525648673, −3.157167455993323, −2.439913231780743, −1.863875934230161, −0.7241633396757935, 0.7241633396757935, 1.863875934230161, 2.439913231780743, 3.157167455993323, 3.938873525648673, 4.951647814955785, 5.520878182317374, 5.709904201371578, 6.955911321723832, 7.663389185229541, 8.020433891779465, 8.520197792313890, 9.269290720929076, 9.832120452302555, 10.57804502636371, 10.96111381241260, 11.64044329719434, 12.25562837435569, 12.92005485870577, 13.66318885437048, 13.82967186738561, 14.62234896527861, 14.90872592555520, 15.49209902649794, 16.19996811960005

Graph of the $Z$-function along the critical line