Properties

Label 2-1350-9.7-c1-0-4
Degree 22
Conductor 13501350
Sign 0.8000.598i0.800 - 0.598i
Analytic cond. 10.779810.7798
Root an. cond. 3.283263.28326
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.5 − 0.866i)2-s + (−0.499 − 0.866i)4-s + (−1.18 + 2.05i)7-s − 0.999·8-s + (0.686 − 1.18i)11-s + (2.37 + 4.10i)13-s + (1.18 + 2.05i)14-s + (−0.5 + 0.866i)16-s − 7.37·17-s + 3.37·19-s + (−0.686 − 1.18i)22-s + (2.18 + 3.78i)23-s + 4.74·26-s + 2.37·28-s + (−2.18 + 3.78i)29-s + ⋯
L(s)  = 1  + (0.353 − 0.612i)2-s + (−0.249 − 0.433i)4-s + (−0.448 + 0.776i)7-s − 0.353·8-s + (0.206 − 0.358i)11-s + (0.657 + 1.13i)13-s + (0.317 + 0.549i)14-s + (−0.125 + 0.216i)16-s − 1.78·17-s + 0.773·19-s + (−0.146 − 0.253i)22-s + (0.455 + 0.789i)23-s + 0.930·26-s + 0.448·28-s + (−0.405 + 0.703i)29-s + ⋯

Functional equation

Λ(s)=(1350s/2ΓC(s)L(s)=((0.8000.598i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 1350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.800 - 0.598i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(1350s/2ΓC(s+1/2)L(s)=((0.8000.598i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1350 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.800 - 0.598i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 13501350    =    233522 \cdot 3^{3} \cdot 5^{2}
Sign: 0.8000.598i0.800 - 0.598i
Analytic conductor: 10.779810.7798
Root analytic conductor: 3.283263.28326
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ1350(451,)\chi_{1350} (451, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 1350, ( :1/2), 0.8000.598i)(2,\ 1350,\ (\ :1/2),\ 0.800 - 0.598i)

Particular Values

L(1)L(1) \approx 1.5189217371.518921737
L(12)L(\frac12) \approx 1.5189217371.518921737
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
3 1 1
5 1 1
good7 1+(1.182.05i)T+(3.56.06i)T2 1 + (1.18 - 2.05i)T + (-3.5 - 6.06i)T^{2}
11 1+(0.686+1.18i)T+(5.59.52i)T2 1 + (-0.686 + 1.18i)T + (-5.5 - 9.52i)T^{2}
13 1+(2.374.10i)T+(6.5+11.2i)T2 1 + (-2.37 - 4.10i)T + (-6.5 + 11.2i)T^{2}
17 1+7.37T+17T2 1 + 7.37T + 17T^{2}
19 13.37T+19T2 1 - 3.37T + 19T^{2}
23 1+(2.183.78i)T+(11.5+19.9i)T2 1 + (-2.18 - 3.78i)T + (-11.5 + 19.9i)T^{2}
29 1+(2.183.78i)T+(14.525.1i)T2 1 + (2.18 - 3.78i)T + (-14.5 - 25.1i)T^{2}
31 1+(3.375.84i)T+(15.5+26.8i)T2 1 + (-3.37 - 5.84i)T + (-15.5 + 26.8i)T^{2}
37 14T+37T2 1 - 4T + 37T^{2}
41 1+(1.5+2.59i)T+(20.5+35.5i)T2 1 + (1.5 + 2.59i)T + (-20.5 + 35.5i)T^{2}
43 1+(5.689.84i)T+(21.537.2i)T2 1 + (5.68 - 9.84i)T + (-21.5 - 37.2i)T^{2}
47 1+(0.813+1.40i)T+(23.540.7i)T2 1 + (-0.813 + 1.40i)T + (-23.5 - 40.7i)T^{2}
53 111.4T+53T2 1 - 11.4T + 53T^{2}
59 1+(0.686+1.18i)T+(29.5+51.0i)T2 1 + (0.686 + 1.18i)T + (-29.5 + 51.0i)T^{2}
61 1+(4.557.89i)T+(30.552.8i)T2 1 + (4.55 - 7.89i)T + (-30.5 - 52.8i)T^{2}
67 1+(3.5+6.06i)T+(33.5+58.0i)T2 1 + (3.5 + 6.06i)T + (-33.5 + 58.0i)T^{2}
71 16T+71T2 1 - 6T + 71T^{2}
73 114.1T+73T2 1 - 14.1T + 73T^{2}
79 1+(11.73i)T+(39.568.4i)T2 1 + (1 - 1.73i)T + (-39.5 - 68.4i)T^{2}
83 1+(0.8131.40i)T+(41.571.8i)T2 1 + (0.813 - 1.40i)T + (-41.5 - 71.8i)T^{2}
89 11.11T+89T2 1 - 1.11T + 89T^{2}
97 1+(1.312.27i)T+(48.584.0i)T2 1 + (1.31 - 2.27i)T + (-48.5 - 84.0i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−9.477573478904409329434884160477, −9.116160604530539203097719117756, −8.397657390769558818145562194177, −6.96410904072018244418434872138, −6.37221030211350448392634298960, −5.43063259331106849398368286666, −4.49309436647894845531686685883, −3.52963761548160609499957729765, −2.57623469464808744662191450288, −1.42986992319072475202883683175, 0.57768095327140122740756497340, 2.47099230915486505267427229671, 3.66027291201539329773769919083, 4.37766815554762989460098229166, 5.38505988644591281667851504292, 6.36858332515990500959934303678, 6.93176679089196913227581720570, 7.81189701933564748354552819997, 8.576948804242984838731741582499, 9.452400304042564185944083478651

Graph of the ZZ-function along the critical line