L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.499 − 0.866i)4-s + (−1.18 + 2.05i)7-s − 0.999·8-s + (0.686 − 1.18i)11-s + (2.37 + 4.10i)13-s + (1.18 + 2.05i)14-s + (−0.5 + 0.866i)16-s − 7.37·17-s + 3.37·19-s + (−0.686 − 1.18i)22-s + (2.18 + 3.78i)23-s + 4.74·26-s + 2.37·28-s + (−2.18 + 3.78i)29-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (−0.249 − 0.433i)4-s + (−0.448 + 0.776i)7-s − 0.353·8-s + (0.206 − 0.358i)11-s + (0.657 + 1.13i)13-s + (0.317 + 0.549i)14-s + (−0.125 + 0.216i)16-s − 1.78·17-s + 0.773·19-s + (−0.146 − 0.253i)22-s + (0.455 + 0.789i)23-s + 0.930·26-s + 0.448·28-s + (−0.405 + 0.703i)29-s + ⋯ |
Λ(s)=(=(1350s/2ΓC(s)L(s)(0.800−0.598i)Λ(2−s)
Λ(s)=(=(1350s/2ΓC(s+1/2)L(s)(0.800−0.598i)Λ(1−s)
Degree: |
2 |
Conductor: |
1350
= 2⋅33⋅52
|
Sign: |
0.800−0.598i
|
Analytic conductor: |
10.7798 |
Root analytic conductor: |
3.28326 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1350(451,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1350, ( :1/2), 0.800−0.598i)
|
Particular Values
L(1) |
≈ |
1.518921737 |
L(21) |
≈ |
1.518921737 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.5+0.866i)T |
| 3 | 1 |
| 5 | 1 |
good | 7 | 1+(1.18−2.05i)T+(−3.5−6.06i)T2 |
| 11 | 1+(−0.686+1.18i)T+(−5.5−9.52i)T2 |
| 13 | 1+(−2.37−4.10i)T+(−6.5+11.2i)T2 |
| 17 | 1+7.37T+17T2 |
| 19 | 1−3.37T+19T2 |
| 23 | 1+(−2.18−3.78i)T+(−11.5+19.9i)T2 |
| 29 | 1+(2.18−3.78i)T+(−14.5−25.1i)T2 |
| 31 | 1+(−3.37−5.84i)T+(−15.5+26.8i)T2 |
| 37 | 1−4T+37T2 |
| 41 | 1+(1.5+2.59i)T+(−20.5+35.5i)T2 |
| 43 | 1+(5.68−9.84i)T+(−21.5−37.2i)T2 |
| 47 | 1+(−0.813+1.40i)T+(−23.5−40.7i)T2 |
| 53 | 1−11.4T+53T2 |
| 59 | 1+(0.686+1.18i)T+(−29.5+51.0i)T2 |
| 61 | 1+(4.55−7.89i)T+(−30.5−52.8i)T2 |
| 67 | 1+(3.5+6.06i)T+(−33.5+58.0i)T2 |
| 71 | 1−6T+71T2 |
| 73 | 1−14.1T+73T2 |
| 79 | 1+(1−1.73i)T+(−39.5−68.4i)T2 |
| 83 | 1+(0.813−1.40i)T+(−41.5−71.8i)T2 |
| 89 | 1−1.11T+89T2 |
| 97 | 1+(1.31−2.27i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.477573478904409329434884160477, −9.116160604530539203097719117756, −8.397657390769558818145562194177, −6.96410904072018244418434872138, −6.37221030211350448392634298960, −5.43063259331106849398368286666, −4.49309436647894845531686685883, −3.52963761548160609499957729765, −2.57623469464808744662191450288, −1.42986992319072475202883683175,
0.57768095327140122740756497340, 2.47099230915486505267427229671, 3.66027291201539329773769919083, 4.37766815554762989460098229166, 5.38505988644591281667851504292, 6.36858332515990500959934303678, 6.93176679089196913227581720570, 7.81189701933564748354552819997, 8.576948804242984838731741582499, 9.452400304042564185944083478651