L(s) = 1 | + (0.5 + 0.866i)2-s + (−0.499 + 0.866i)4-s + (−1.18 − 2.05i)7-s − 0.999·8-s + (0.686 + 1.18i)11-s + (2.37 − 4.10i)13-s + (1.18 − 2.05i)14-s + (−0.5 − 0.866i)16-s − 7.37·17-s + 3.37·19-s + (−0.686 + 1.18i)22-s + (2.18 − 3.78i)23-s + 4.74·26-s + 2.37·28-s + (−2.18 − 3.78i)29-s + ⋯ |
L(s) = 1 | + (0.353 + 0.612i)2-s + (−0.249 + 0.433i)4-s + (−0.448 − 0.776i)7-s − 0.353·8-s + (0.206 + 0.358i)11-s + (0.657 − 1.13i)13-s + (0.317 − 0.549i)14-s + (−0.125 − 0.216i)16-s − 1.78·17-s + 0.773·19-s + (−0.146 + 0.253i)22-s + (0.455 − 0.789i)23-s + 0.930·26-s + 0.448·28-s + (−0.405 − 0.703i)29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.800 + 0.598i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1350 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.800 + 0.598i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.518921737\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.518921737\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 - 0.866i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + (1.18 + 2.05i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-0.686 - 1.18i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-2.37 + 4.10i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + 7.37T + 17T^{2} \) |
| 19 | \( 1 - 3.37T + 19T^{2} \) |
| 23 | \( 1 + (-2.18 + 3.78i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (2.18 + 3.78i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-3.37 + 5.84i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 4T + 37T^{2} \) |
| 41 | \( 1 + (1.5 - 2.59i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (5.68 + 9.84i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-0.813 - 1.40i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 11.4T + 53T^{2} \) |
| 59 | \( 1 + (0.686 - 1.18i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (4.55 + 7.89i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (3.5 - 6.06i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 6T + 71T^{2} \) |
| 73 | \( 1 - 14.1T + 73T^{2} \) |
| 79 | \( 1 + (1 + 1.73i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (0.813 + 1.40i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 1.11T + 89T^{2} \) |
| 97 | \( 1 + (1.31 + 2.27i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.452400304042564185944083478651, −8.576948804242984838731741582499, −7.81189701933564748354552819997, −6.93176679089196913227581720570, −6.36858332515990500959934303678, −5.38505988644591281667851504292, −4.37766815554762989460098229166, −3.66027291201539329773769919083, −2.47099230915486505267427229671, −0.57768095327140122740756497340,
1.42986992319072475202883683175, 2.57623469464808744662191450288, 3.52963761548160609499957729765, 4.49309436647894845531686685883, 5.43063259331106849398368286666, 6.37221030211350448392634298960, 6.96410904072018244418434872138, 8.397657390769558818145562194177, 9.116160604530539203097719117756, 9.477573478904409329434884160477