Properties

Label 2-1344-1.1-c3-0-13
Degree $2$
Conductor $1344$
Sign $1$
Analytic cond. $79.2985$
Root an. cond. $8.90497$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s − 12.9·5-s + 7·7-s + 9·9-s + 50.3·11-s + 9.63·13-s + 38.8·15-s + 84.3·17-s − 61.5·19-s − 21·21-s + 38.5·23-s + 42.6·25-s − 27·27-s − 281.·29-s + 168.·31-s − 151.·33-s − 90.6·35-s − 58.3·37-s − 28.9·39-s − 83.0·41-s − 32.7·43-s − 116.·45-s − 260.·47-s + 49·49-s − 253.·51-s − 168.·53-s − 652.·55-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.15·5-s + 0.377·7-s + 0.333·9-s + 1.38·11-s + 0.205·13-s + 0.668·15-s + 1.20·17-s − 0.742·19-s − 0.218·21-s + 0.349·23-s + 0.341·25-s − 0.192·27-s − 1.80·29-s + 0.975·31-s − 0.797·33-s − 0.437·35-s − 0.259·37-s − 0.118·39-s − 0.316·41-s − 0.116·43-s − 0.386·45-s − 0.808·47-s + 0.142·49-s − 0.694·51-s − 0.437·53-s − 1.59·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1344 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1344 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1344\)    =    \(2^{6} \cdot 3 \cdot 7\)
Sign: $1$
Analytic conductor: \(79.2985\)
Root analytic conductor: \(8.90497\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1344,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.408586320\)
\(L(\frac12)\) \(\approx\) \(1.408586320\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 3T \)
7 \( 1 - 7T \)
good5 \( 1 + 12.9T + 125T^{2} \)
11 \( 1 - 50.3T + 1.33e3T^{2} \)
13 \( 1 - 9.63T + 2.19e3T^{2} \)
17 \( 1 - 84.3T + 4.91e3T^{2} \)
19 \( 1 + 61.5T + 6.85e3T^{2} \)
23 \( 1 - 38.5T + 1.21e4T^{2} \)
29 \( 1 + 281.T + 2.43e4T^{2} \)
31 \( 1 - 168.T + 2.97e4T^{2} \)
37 \( 1 + 58.3T + 5.06e4T^{2} \)
41 \( 1 + 83.0T + 6.89e4T^{2} \)
43 \( 1 + 32.7T + 7.95e4T^{2} \)
47 \( 1 + 260.T + 1.03e5T^{2} \)
53 \( 1 + 168.T + 1.48e5T^{2} \)
59 \( 1 - 236.T + 2.05e5T^{2} \)
61 \( 1 - 450.T + 2.26e5T^{2} \)
67 \( 1 + 542.T + 3.00e5T^{2} \)
71 \( 1 + 437.T + 3.57e5T^{2} \)
73 \( 1 - 1.09e3T + 3.89e5T^{2} \)
79 \( 1 - 272.T + 4.93e5T^{2} \)
83 \( 1 + 136.T + 5.71e5T^{2} \)
89 \( 1 - 1.41e3T + 7.04e5T^{2} \)
97 \( 1 - 269.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.211330583016969671487836023424, −8.325253906558223685271925952414, −7.61858822488759997929426058616, −6.81450695522110904115724389047, −5.97527793291704594261505559098, −4.94940228033923228263870931230, −4.03201929426590247338679710569, −3.44193212975405965004190683215, −1.70488634707735000763823103674, −0.63813019365216755117812031425, 0.63813019365216755117812031425, 1.70488634707735000763823103674, 3.44193212975405965004190683215, 4.03201929426590247338679710569, 4.94940228033923228263870931230, 5.97527793291704594261505559098, 6.81450695522110904115724389047, 7.61858822488759997929426058616, 8.325253906558223685271925952414, 9.211330583016969671487836023424

Graph of the $Z$-function along the critical line