Properties

Label 1344.4.a.bs
Level $1344$
Weight $4$
Character orbit 1344.a
Self dual yes
Analytic conductor $79.299$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1344,4,Mod(1,1344)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1344, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1344.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1344 = 2^{6} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1344.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,-9,0,-6,0,21,0,27,0,-48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(79.2985670477\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.37341.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 57x - 148 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 672)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 3 q^{3} + (\beta_1 - 2) q^{5} + 7 q^{7} + 9 q^{9} + (\beta_{2} - \beta_1 - 16) q^{11} + (\beta_{2} + 4 \beta_1 - 2) q^{13} + ( - 3 \beta_1 + 6) q^{15} + (\beta_{2} - \beta_1 + 18) q^{17} + ( - \beta_{2} - 2 \beta_1 - 28) q^{19}+ \cdots + (9 \beta_{2} - 9 \beta_1 - 144) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 9 q^{3} - 6 q^{5} + 21 q^{7} + 27 q^{9} - 48 q^{11} - 6 q^{13} + 18 q^{15} + 54 q^{17} - 84 q^{19} - 63 q^{21} + 48 q^{23} + 93 q^{25} - 81 q^{27} - 18 q^{29} + 72 q^{31} + 144 q^{33} - 42 q^{35}+ \cdots - 432 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - 57x - 148 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 4\nu^{2} - 16\nu - 152 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{2} + 8\beta _1 + 152 ) / 4 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−5.47374
−3.13924
8.61298
0 −3.00000 0 −12.9475 0 7.00000 0 9.00000 0
1.2 0 −3.00000 0 −8.27848 0 7.00000 0 9.00000 0
1.3 0 −3.00000 0 15.2260 0 7.00000 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1344.4.a.bs 3
4.b odd 2 1 1344.4.a.bu 3
8.b even 2 1 672.4.a.r yes 3
8.d odd 2 1 672.4.a.p 3
24.f even 2 1 2016.4.a.u 3
24.h odd 2 1 2016.4.a.v 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
672.4.a.p 3 8.d odd 2 1
672.4.a.r yes 3 8.b even 2 1
1344.4.a.bs 3 1.a even 1 1 trivial
1344.4.a.bu 3 4.b odd 2 1
2016.4.a.u 3 24.f even 2 1
2016.4.a.v 3 24.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1344))\):

\( T_{5}^{3} + 6T_{5}^{2} - 216T_{5} - 1632 \) Copy content Toggle raw display
\( T_{11}^{3} + 48T_{11}^{2} - 3060T_{11} - 95488 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( (T + 3)^{3} \) Copy content Toggle raw display
$5$ \( T^{3} + 6 T^{2} + \cdots - 1632 \) Copy content Toggle raw display
$7$ \( (T - 7)^{3} \) Copy content Toggle raw display
$11$ \( T^{3} + 48 T^{2} + \cdots - 95488 \) Copy content Toggle raw display
$13$ \( T^{3} + 6 T^{2} + \cdots + 63656 \) Copy content Toggle raw display
$17$ \( T^{3} - 54 T^{2} + \cdots + 24736 \) Copy content Toggle raw display
$19$ \( T^{3} + 84 T^{2} + \cdots - 200256 \) Copy content Toggle raw display
$23$ \( T^{3} - 48 T^{2} + \cdots + 187648 \) Copy content Toggle raw display
$29$ \( T^{3} + 18 T^{2} + \cdots + 4848088 \) Copy content Toggle raw display
$31$ \( T^{3} - 72 T^{2} + \cdots + 2342912 \) Copy content Toggle raw display
$37$ \( T^{3} + 210 T^{2} + \cdots - 53576 \) Copy content Toggle raw display
$41$ \( T^{3} - 414 T^{2} + \cdots + 4957664 \) Copy content Toggle raw display
$43$ \( T^{3} + 168 T^{2} + \cdots - 722944 \) Copy content Toggle raw display
$47$ \( T^{3} - 72 T^{2} + \cdots - 17124736 \) Copy content Toggle raw display
$53$ \( T^{3} + 402 T^{2} + \cdots - 7840072 \) Copy content Toggle raw display
$59$ \( T^{3} + 540 T^{2} + \cdots + 11538688 \) Copy content Toggle raw display
$61$ \( T^{3} + 798 T^{2} + \cdots - 170037272 \) Copy content Toggle raw display
$67$ \( T^{3} + 48 T^{2} + \cdots - 44046592 \) Copy content Toggle raw display
$71$ \( T^{3} + 456 T^{2} + \cdots - 19646112 \) Copy content Toggle raw display
$73$ \( T^{3} - 1230 T^{2} + \cdots + 640250616 \) Copy content Toggle raw display
$79$ \( T^{3} + 1368 T^{2} + \cdots - 182717824 \) Copy content Toggle raw display
$83$ \( T^{3} + 60 T^{2} + \cdots - 90712000 \) Copy content Toggle raw display
$89$ \( T^{3} - 2742 T^{2} + \cdots - 524337504 \) Copy content Toggle raw display
$97$ \( T^{3} - 1950 T^{2} + \cdots - 50085448 \) Copy content Toggle raw display
show more
show less