Properties

Label 2-130050-1.1-c1-0-122
Degree $2$
Conductor $130050$
Sign $-1$
Analytic cond. $1038.45$
Root an. cond. $32.2250$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 4·7-s − 8-s − 5·13-s − 4·14-s + 16-s + 2·19-s + 3·23-s + 5·26-s + 4·28-s + 6·29-s − 4·31-s − 32-s + 37-s − 2·38-s − 8·43-s − 3·46-s + 3·47-s + 9·49-s − 5·52-s − 6·53-s − 4·56-s − 6·58-s + 9·59-s − 61-s + 4·62-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 1.51·7-s − 0.353·8-s − 1.38·13-s − 1.06·14-s + 1/4·16-s + 0.458·19-s + 0.625·23-s + 0.980·26-s + 0.755·28-s + 1.11·29-s − 0.718·31-s − 0.176·32-s + 0.164·37-s − 0.324·38-s − 1.21·43-s − 0.442·46-s + 0.437·47-s + 9/7·49-s − 0.693·52-s − 0.824·53-s − 0.534·56-s − 0.787·58-s + 1.17·59-s − 0.128·61-s + 0.508·62-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 130050 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 130050 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(130050\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(1038.45\)
Root analytic conductor: \(32.2250\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 130050,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 \)
17 \( 1 \)
good7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 5 T + p T^{2} \) 1.13.f
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - T + p T^{2} \) 1.37.ab
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 - 3 T + p T^{2} \) 1.47.ad
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 9 T + p T^{2} \) 1.59.aj
61 \( 1 + T + p T^{2} \) 1.61.b
67 \( 1 - 10 T + p T^{2} \) 1.67.ak
71 \( 1 + 9 T + p T^{2} \) 1.71.j
73 \( 1 - 7 T + p T^{2} \) 1.73.ah
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 3 T + p T^{2} \) 1.83.d
89 \( 1 + 18 T + p T^{2} \) 1.89.s
97 \( 1 - 7 T + p T^{2} \) 1.97.ah
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.97639733661181, −13.18097447966962, −12.64143190140126, −12.11338086541330, −11.72301221708205, −11.31802579979940, −10.80313052652886, −10.38212047417320, −9.745311894945319, −9.457389909037315, −8.768137755820095, −8.253145046389293, −7.992301005037203, −7.336826590434377, −7.020790447715641, −6.461144659410996, −5.561289214162716, −5.183423908570794, −4.759386676083924, −4.170270490207187, −3.339617244971811, −2.650788207785849, −2.164319761758147, −1.494632529793773, −0.9223779827643340, 0, 0.9223779827643340, 1.494632529793773, 2.164319761758147, 2.650788207785849, 3.339617244971811, 4.170270490207187, 4.759386676083924, 5.183423908570794, 5.561289214162716, 6.461144659410996, 7.020790447715641, 7.336826590434377, 7.992301005037203, 8.253145046389293, 8.768137755820095, 9.457389909037315, 9.745311894945319, 10.38212047417320, 10.80313052652886, 11.31802579979940, 11.72301221708205, 12.11338086541330, 12.64143190140126, 13.18097447966962, 13.97639733661181

Graph of the $Z$-function along the critical line