| L(s)  = 1 | + 6·5-s     − 9.94·7-s         + 19.8·11-s     − 9.94i·13-s         + 19.8i·17-s     + 7i·19-s         + 42i·23-s     + 11·25-s         + 24·29-s     − 39.7·31-s         − 59.6·35-s     − 49.7i·37-s         − 39.7i·41-s     + 50i·43-s         + 6i·47-s    + ⋯ | 
| L(s)  = 1 | + 1.20·5-s     − 1.42·7-s         + 1.80·11-s     − 0.765i·13-s         + 1.17i·17-s     + 0.368i·19-s         + 1.82i·23-s     + 0.440·25-s         + 0.827·29-s     − 1.28·31-s         − 1.70·35-s     − 1.34i·37-s         − 0.970i·41-s     + 1.16i·43-s         + 0.127i·47-s    + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 1728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.707 - 0.707i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1728 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.707 - 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(\frac{3}{2})\) | \(\approx\) | \(2.270028328\) | 
    
      | \(L(\frac12)\) | \(\approx\) | \(2.270028328\) | 
    
        
      | \(L(2)\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | 
|---|
| bad | 2 | \( 1 \) | 
|  | 3 | \( 1 \) | 
| good | 5 | \( 1 - 6T + 25T^{2} \) | 
|  | 7 | \( 1 + 9.94T + 49T^{2} \) | 
|  | 11 | \( 1 - 19.8T + 121T^{2} \) | 
|  | 13 | \( 1 + 9.94iT - 169T^{2} \) | 
|  | 17 | \( 1 - 19.8iT - 289T^{2} \) | 
|  | 19 | \( 1 - 7iT - 361T^{2} \) | 
|  | 23 | \( 1 - 42iT - 529T^{2} \) | 
|  | 29 | \( 1 - 24T + 841T^{2} \) | 
|  | 31 | \( 1 + 39.7T + 961T^{2} \) | 
|  | 37 | \( 1 + 49.7iT - 1.36e3T^{2} \) | 
|  | 41 | \( 1 + 39.7iT - 1.68e3T^{2} \) | 
|  | 43 | \( 1 - 50iT - 1.84e3T^{2} \) | 
|  | 47 | \( 1 - 6iT - 2.20e3T^{2} \) | 
|  | 53 | \( 1 - 84T + 2.80e3T^{2} \) | 
|  | 59 | \( 1 - 19.8T + 3.48e3T^{2} \) | 
|  | 61 | \( 1 - 89.5iT - 3.72e3T^{2} \) | 
|  | 67 | \( 1 - 53iT - 4.48e3T^{2} \) | 
|  | 71 | \( 1 + 60iT - 5.04e3T^{2} \) | 
|  | 73 | \( 1 - 119T + 5.32e3T^{2} \) | 
|  | 79 | \( 1 + 49.7T + 6.24e3T^{2} \) | 
|  | 83 | \( 1 + 6.88e3T^{2} \) | 
|  | 89 | \( 1 - 59.6iT - 7.92e3T^{2} \) | 
|  | 97 | \( 1 - 13T + 9.40e3T^{2} \) | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−9.285899875877660994149253009538, −8.807483943940530545583455828334, −7.48310538476372153153044067628, −6.66471505106400007969186314522, −5.93576191194737342902882192386, −5.60028517676884564125145673994, −3.91748656144785452883946598322, −3.44260658682190354642097682712, −2.10839369217129358135027529751, −1.10440336002602661351645368347, 
0.67042656924063861836739141265, 1.97160534154080717400795108718, 2.94531929088212186320701299038, 3.96236411335546705376316049609, 4.95196877875798822822069041646, 6.09781650306951241578664232139, 6.65478702132272502015625302735, 6.94291035847294982890019433300, 8.633412489725292484024261600339, 9.195015713765930176493592557015
