Properties

Label 2-12e3-24.5-c2-0-28
Degree $2$
Conductor $1728$
Sign $0.707 - 0.707i$
Analytic cond. $47.0845$
Root an. cond. $6.86182$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6·5-s − 9.94·7-s + 19.8·11-s − 9.94i·13-s + 19.8i·17-s + 7i·19-s + 42i·23-s + 11·25-s + 24·29-s − 39.7·31-s − 59.6·35-s − 49.7i·37-s − 39.7i·41-s + 50i·43-s + 6i·47-s + ⋯
L(s)  = 1  + 1.20·5-s − 1.42·7-s + 1.80·11-s − 0.765i·13-s + 1.17i·17-s + 0.368i·19-s + 1.82i·23-s + 0.440·25-s + 0.827·29-s − 1.28·31-s − 1.70·35-s − 1.34i·37-s − 0.970i·41-s + 1.16i·43-s + 0.127i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.707 - 0.707i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1728 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.707 - 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1728\)    =    \(2^{6} \cdot 3^{3}\)
Sign: $0.707 - 0.707i$
Analytic conductor: \(47.0845\)
Root analytic conductor: \(6.86182\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{1728} (161, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1728,\ (\ :1),\ 0.707 - 0.707i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(2.270028328\)
\(L(\frac12)\) \(\approx\) \(2.270028328\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 - 6T + 25T^{2} \)
7 \( 1 + 9.94T + 49T^{2} \)
11 \( 1 - 19.8T + 121T^{2} \)
13 \( 1 + 9.94iT - 169T^{2} \)
17 \( 1 - 19.8iT - 289T^{2} \)
19 \( 1 - 7iT - 361T^{2} \)
23 \( 1 - 42iT - 529T^{2} \)
29 \( 1 - 24T + 841T^{2} \)
31 \( 1 + 39.7T + 961T^{2} \)
37 \( 1 + 49.7iT - 1.36e3T^{2} \)
41 \( 1 + 39.7iT - 1.68e3T^{2} \)
43 \( 1 - 50iT - 1.84e3T^{2} \)
47 \( 1 - 6iT - 2.20e3T^{2} \)
53 \( 1 - 84T + 2.80e3T^{2} \)
59 \( 1 - 19.8T + 3.48e3T^{2} \)
61 \( 1 - 89.5iT - 3.72e3T^{2} \)
67 \( 1 - 53iT - 4.48e3T^{2} \)
71 \( 1 + 60iT - 5.04e3T^{2} \)
73 \( 1 - 119T + 5.32e3T^{2} \)
79 \( 1 + 49.7T + 6.24e3T^{2} \)
83 \( 1 + 6.88e3T^{2} \)
89 \( 1 - 59.6iT - 7.92e3T^{2} \)
97 \( 1 - 13T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.285899875877660994149253009538, −8.807483943940530545583455828334, −7.48310538476372153153044067628, −6.66471505106400007969186314522, −5.93576191194737342902882192386, −5.60028517676884564125145673994, −3.91748656144785452883946598322, −3.44260658682190354642097682712, −2.10839369217129358135027529751, −1.10440336002602661351645368347, 0.67042656924063861836739141265, 1.97160534154080717400795108718, 2.94531929088212186320701299038, 3.96236411335546705376316049609, 4.95196877875798822822069041646, 6.09781650306951241578664232139, 6.65478702132272502015625302735, 6.94291035847294982890019433300, 8.633412489725292484024261600339, 9.195015713765930176493592557015

Graph of the $Z$-function along the critical line