L(s) = 1 | + (−0.866 − 0.5i)2-s + (−1.36 + 2.36i)3-s + (0.499 + 0.866i)4-s + i·5-s + (2.36 − 1.36i)6-s − 0.999i·8-s + (−2.23 − 3.86i)9-s + (0.5 − 0.866i)10-s + (2.36 + 1.36i)11-s − 2.73·12-s + (2.59 − 2.5i)13-s + (−2.36 − 1.36i)15-s + (−0.5 + 0.866i)16-s + (1.13 + 1.96i)17-s + 4.46i·18-s + (4.73 − 2.73i)19-s + ⋯ |
L(s) = 1 | + (−0.612 − 0.353i)2-s + (−0.788 + 1.36i)3-s + (0.249 + 0.433i)4-s + 0.447i·5-s + (0.965 − 0.557i)6-s − 0.353i·8-s + (−0.744 − 1.28i)9-s + (0.158 − 0.273i)10-s + (0.713 + 0.411i)11-s − 0.788·12-s + (0.720 − 0.693i)13-s + (−0.610 − 0.352i)15-s + (−0.125 + 0.216i)16-s + (0.275 + 0.476i)17-s + 1.05i·18-s + (1.08 − 0.626i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1274 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.711 - 0.702i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1274 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.711 - 0.702i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.032374708\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.032374708\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.866 + 0.5i)T \) |
| 7 | \( 1 \) |
| 13 | \( 1 + (-2.59 + 2.5i)T \) |
good | 3 | \( 1 + (1.36 - 2.36i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 - iT - 5T^{2} \) |
| 11 | \( 1 + (-2.36 - 1.36i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-1.13 - 1.96i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-4.73 + 2.73i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.36 + 4.09i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.5 + 2.59i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 8.73iT - 31T^{2} \) |
| 37 | \( 1 + (-4.5 - 2.59i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-3.86 - 2.23i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (0.901 + 1.56i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 10.9iT - 47T^{2} \) |
| 53 | \( 1 - 8.46T + 53T^{2} \) |
| 59 | \( 1 + (6.29 - 3.63i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (4.13 + 7.16i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-4.90 - 2.83i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (12 - 6.92i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 9.39iT - 73T^{2} \) |
| 79 | \( 1 + 14.1T + 79T^{2} \) |
| 83 | \( 1 - 14.1iT - 83T^{2} \) |
| 89 | \( 1 + (-8.19 - 4.73i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-1.26 + 0.732i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.00595332697119388421019031269, −9.221471089552621420989961107715, −8.450794117844588772084221945466, −7.33429593984877850925516367082, −6.37848850639581572429491967690, −5.56835945456943844201263443765, −4.50508194200424140892110062596, −3.72492378373812466345746494227, −2.72975081746811450121505036781, −0.854987506322031062500950403843,
1.01952172076970080916165886682, 1.49288526919103277691109533016, 3.20633551373305424985345138543, 4.79550186875561670873487602936, 5.76984925093302297641688383600, 6.32493819762885843300118873352, 7.21095419392996057731337118551, 7.67270844259261979308490062217, 8.822321688234281131677519305515, 9.212138167291152303792389366264