L(s) = 1 | + (−0.866 + 0.5i)2-s + (−1.36 − 2.36i)3-s + (0.499 − 0.866i)4-s − i·5-s + (2.36 + 1.36i)6-s + 0.999i·8-s + (−2.23 + 3.86i)9-s + (0.5 + 0.866i)10-s + (2.36 − 1.36i)11-s − 2.73·12-s + (2.59 + 2.5i)13-s + (−2.36 + 1.36i)15-s + (−0.5 − 0.866i)16-s + (1.13 − 1.96i)17-s − 4.46i·18-s + (4.73 + 2.73i)19-s + ⋯ |
L(s) = 1 | + (−0.612 + 0.353i)2-s + (−0.788 − 1.36i)3-s + (0.249 − 0.433i)4-s − 0.447i·5-s + (0.965 + 0.557i)6-s + 0.353i·8-s + (−0.744 + 1.28i)9-s + (0.158 + 0.273i)10-s + (0.713 − 0.411i)11-s − 0.788·12-s + (0.720 + 0.693i)13-s + (−0.610 + 0.352i)15-s + (−0.125 − 0.216i)16-s + (0.275 − 0.476i)17-s − 1.05i·18-s + (1.08 + 0.626i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1274 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.711 + 0.702i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1274 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.711 + 0.702i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.032374708\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.032374708\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.866 - 0.5i)T \) |
| 7 | \( 1 \) |
| 13 | \( 1 + (-2.59 - 2.5i)T \) |
good | 3 | \( 1 + (1.36 + 2.36i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + iT - 5T^{2} \) |
| 11 | \( 1 + (-2.36 + 1.36i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-1.13 + 1.96i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-4.73 - 2.73i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.36 - 4.09i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.5 - 2.59i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 8.73iT - 31T^{2} \) |
| 37 | \( 1 + (-4.5 + 2.59i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-3.86 + 2.23i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (0.901 - 1.56i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 10.9iT - 47T^{2} \) |
| 53 | \( 1 - 8.46T + 53T^{2} \) |
| 59 | \( 1 + (6.29 + 3.63i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (4.13 - 7.16i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-4.90 + 2.83i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (12 + 6.92i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 9.39iT - 73T^{2} \) |
| 79 | \( 1 + 14.1T + 79T^{2} \) |
| 83 | \( 1 + 14.1iT - 83T^{2} \) |
| 89 | \( 1 + (-8.19 + 4.73i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-1.26 - 0.732i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.212138167291152303792389366264, −8.822321688234281131677519305515, −7.67270844259261979308490062217, −7.21095419392996057731337118551, −6.32493819762885843300118873352, −5.76984925093302297641688383600, −4.79550186875561670873487602936, −3.20633551373305424985345138543, −1.49288526919103277691109533016, −1.01952172076970080916165886682,
0.854987506322031062500950403843, 2.72975081746811450121505036781, 3.72492378373812466345746494227, 4.50508194200424140892110062596, 5.56835945456943844201263443765, 6.37848850639581572429491967690, 7.33429593984877850925516367082, 8.450794117844588772084221945466, 9.221471089552621420989961107715, 10.00595332697119388421019031269