Properties

Label 2-1274-1.1-c1-0-15
Degree $2$
Conductor $1274$
Sign $1$
Analytic cond. $10.1729$
Root an. cond. $3.18950$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s + 2·5-s − 6-s + 8-s − 2·9-s + 2·10-s − 5·11-s − 12-s + 13-s − 2·15-s + 16-s + 8·17-s − 2·18-s + 8·19-s + 2·20-s − 5·22-s + 7·23-s − 24-s − 25-s + 26-s + 5·27-s + 6·29-s − 2·30-s − 5·31-s + 32-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.894·5-s − 0.408·6-s + 0.353·8-s − 2/3·9-s + 0.632·10-s − 1.50·11-s − 0.288·12-s + 0.277·13-s − 0.516·15-s + 1/4·16-s + 1.94·17-s − 0.471·18-s + 1.83·19-s + 0.447·20-s − 1.06·22-s + 1.45·23-s − 0.204·24-s − 1/5·25-s + 0.196·26-s + 0.962·27-s + 1.11·29-s − 0.365·30-s − 0.898·31-s + 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1274 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1274 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1274\)    =    \(2 \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(10.1729\)
Root analytic conductor: \(3.18950\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1274,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.421247775\)
\(L(\frac12)\) \(\approx\) \(2.421247775\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
7 \( 1 \)
13 \( 1 - T \)
good3 \( 1 + T + p T^{2} \) 1.3.b
5 \( 1 - 2 T + p T^{2} \) 1.5.ac
11 \( 1 + 5 T + p T^{2} \) 1.11.f
17 \( 1 - 8 T + p T^{2} \) 1.17.ai
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 - 7 T + p T^{2} \) 1.23.ah
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 5 T + p T^{2} \) 1.31.f
37 \( 1 - T + p T^{2} \) 1.37.ab
41 \( 1 + 9 T + p T^{2} \) 1.41.j
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 - 3 T + p T^{2} \) 1.47.ad
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 7 T + p T^{2} \) 1.61.ah
67 \( 1 + 5 T + p T^{2} \) 1.67.f
71 \( 1 + 14 T + p T^{2} \) 1.71.o
73 \( 1 - 11 T + p T^{2} \) 1.73.al
79 \( 1 + 11 T + p T^{2} \) 1.79.l
83 \( 1 + 14 T + p T^{2} \) 1.83.o
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 13 T + p T^{2} \) 1.97.an
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.05673566918767625250193400504, −8.903429236009401349480128932011, −7.83453299422049901459894856291, −7.12954892125448907737267826189, −5.92467186361142389098445547120, −5.39886040244092591091207033663, −5.08193250239214255940378810642, −3.31827057369299548889601930734, −2.71892018094222102094293573657, −1.13853543508304244978172677070, 1.13853543508304244978172677070, 2.71892018094222102094293573657, 3.31827057369299548889601930734, 5.08193250239214255940378810642, 5.39886040244092591091207033663, 5.92467186361142389098445547120, 7.12954892125448907737267826189, 7.83453299422049901459894856291, 8.903429236009401349480128932011, 10.05673566918767625250193400504

Graph of the $Z$-function along the critical line