Properties

Label 2-126126-1.1-c1-0-119
Degree $2$
Conductor $126126$
Sign $1$
Analytic cond. $1007.12$
Root an. cond. $31.7351$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 4·5-s + 8-s + 4·10-s + 11-s + 13-s + 16-s + 4·17-s + 4·20-s + 22-s + 11·25-s + 26-s + 10·31-s + 32-s + 4·34-s + 10·37-s + 4·40-s + 2·41-s + 6·43-s + 44-s − 12·47-s + 11·50-s + 52-s + 2·53-s + 4·55-s − 4·59-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 1.78·5-s + 0.353·8-s + 1.26·10-s + 0.301·11-s + 0.277·13-s + 1/4·16-s + 0.970·17-s + 0.894·20-s + 0.213·22-s + 11/5·25-s + 0.196·26-s + 1.79·31-s + 0.176·32-s + 0.685·34-s + 1.64·37-s + 0.632·40-s + 0.312·41-s + 0.914·43-s + 0.150·44-s − 1.75·47-s + 1.55·50-s + 0.138·52-s + 0.274·53-s + 0.539·55-s − 0.520·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 126126 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 126126 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(126126\)    =    \(2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \cdot 13\)
Sign: $1$
Analytic conductor: \(1007.12\)
Root analytic conductor: \(31.7351\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 126126,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(9.521598972\)
\(L(\frac12)\) \(\approx\) \(9.521598972\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
7 \( 1 \)
11 \( 1 - T \)
13 \( 1 - T \)
good5 \( 1 - 4 T + p T^{2} \) 1.5.ae
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 10 T + p T^{2} \) 1.31.ak
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 14 T + p T^{2} \) 1.67.ao
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 14 T + p T^{2} \) 1.79.ao
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 16 T + p T^{2} \) 1.89.aq
97 \( 1 + 18 T + p T^{2} \) 1.97.s
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.62288265924177, −13.08551961710473, −12.72835152638550, −12.19322065469088, −11.66782324719779, −11.08171076702284, −10.65414683784305, −9.946507234128958, −9.795057071602037, −9.344074599464166, −8.630167267296647, −8.084191724858299, −7.555944778083551, −6.776167568398018, −6.268064261531276, −6.134320707062679, −5.496825410752016, −4.959092700965399, −4.558876983280835, −3.707821971535853, −3.179808098929712, −2.407574184539418, −2.212683095566424, −1.183247085758524, −0.9568425461443429, 0.9568425461443429, 1.183247085758524, 2.212683095566424, 2.407574184539418, 3.179808098929712, 3.707821971535853, 4.558876983280835, 4.959092700965399, 5.496825410752016, 6.134320707062679, 6.268064261531276, 6.776167568398018, 7.555944778083551, 8.084191724858299, 8.630167267296647, 9.344074599464166, 9.795057071602037, 9.946507234128958, 10.65414683784305, 11.08171076702284, 11.66782324719779, 12.19322065469088, 12.72835152638550, 13.08551961710473, 13.62288265924177

Graph of the $Z$-function along the critical line