L(s) = 1 | − 1.41i·2-s + (−2.92 + 0.657i)3-s − 2.00·4-s + (2.90 + 1.67i)5-s + (0.929 + 4.13i)6-s + (5.64 + 4.13i)7-s + 2.82i·8-s + (8.13 − 3.84i)9-s + (2.37 − 4.10i)10-s + (12.2 − 7.09i)11-s + (5.85 − 1.31i)12-s + (−8.31 − 14.4i)13-s + (5.84 − 7.99i)14-s + (−9.59 − 2.99i)15-s + 4.00·16-s + (13.5 + 7.82i)17-s + ⋯ |
L(s) = 1 | − 0.707i·2-s + (−0.975 + 0.219i)3-s − 0.500·4-s + (0.580 + 0.335i)5-s + (0.154 + 0.689i)6-s + (0.807 + 0.590i)7-s + 0.353i·8-s + (0.903 − 0.427i)9-s + (0.237 − 0.410i)10-s + (1.11 − 0.644i)11-s + (0.487 − 0.109i)12-s + (−0.639 − 1.10i)13-s + (0.417 − 0.570i)14-s + (−0.639 − 0.199i)15-s + 0.250·16-s + (0.797 + 0.460i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 126 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.910 + 0.414i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 126 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.910 + 0.414i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.19811 - 0.260066i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.19811 - 0.260066i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + 1.41iT \) |
| 3 | \( 1 + (2.92 - 0.657i)T \) |
| 7 | \( 1 + (-5.64 - 4.13i)T \) |
good | 5 | \( 1 + (-2.90 - 1.67i)T + (12.5 + 21.6i)T^{2} \) |
| 11 | \( 1 + (-12.2 + 7.09i)T + (60.5 - 104. i)T^{2} \) |
| 13 | \( 1 + (8.31 + 14.4i)T + (-84.5 + 146. i)T^{2} \) |
| 17 | \( 1 + (-13.5 - 7.82i)T + (144.5 + 250. i)T^{2} \) |
| 19 | \( 1 + (-17.3 - 29.9i)T + (-180.5 + 312. i)T^{2} \) |
| 23 | \( 1 + (-22.7 - 13.1i)T + (264.5 + 458. i)T^{2} \) |
| 29 | \( 1 + (-18.2 - 10.5i)T + (420.5 + 728. i)T^{2} \) |
| 31 | \( 1 + 33.7T + 961T^{2} \) |
| 37 | \( 1 + (31.9 + 55.3i)T + (-684.5 + 1.18e3i)T^{2} \) |
| 41 | \( 1 + (-5.44 + 3.14i)T + (840.5 - 1.45e3i)T^{2} \) |
| 43 | \( 1 + (-0.0742 + 0.128i)T + (-924.5 - 1.60e3i)T^{2} \) |
| 47 | \( 1 - 41.9iT - 2.20e3T^{2} \) |
| 53 | \( 1 + (38.6 + 22.2i)T + (1.40e3 + 2.43e3i)T^{2} \) |
| 59 | \( 1 + 41.4iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 15.9T + 3.72e3T^{2} \) |
| 67 | \( 1 + 85.3T + 4.48e3T^{2} \) |
| 71 | \( 1 + 56.4iT - 5.04e3T^{2} \) |
| 73 | \( 1 + (-4.42 + 7.67i)T + (-2.66e3 - 4.61e3i)T^{2} \) |
| 79 | \( 1 - 29.1T + 6.24e3T^{2} \) |
| 83 | \( 1 + (48.8 + 28.2i)T + (3.44e3 + 5.96e3i)T^{2} \) |
| 89 | \( 1 + (5.43 - 3.13i)T + (3.96e3 - 6.85e3i)T^{2} \) |
| 97 | \( 1 + (32.1 - 55.7i)T + (-4.70e3 - 8.14e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.59530732473019320872247636983, −12.01601712367581880924521642159, −11.01717197462723406640947188614, −10.19758916934055726510004046002, −9.203358201243132575253247978831, −7.70415375630169221710242505802, −5.94913198972285384846111816013, −5.25533427591192586008811796610, −3.51911283232801811403269870220, −1.42525773791148910211764277748,
1.31639123463403166692022219998, 4.52413618399836602855857488447, 5.22162265902588412897104413875, 6.79619947117317800844925702477, 7.29776089612343811761845319330, 9.061119952871595227043302173468, 9.925552028898611595686453873721, 11.35409973507180120424731209694, 12.08931768032343088375989892232, 13.38167830284458340660576762047