Properties

Label 126.3.r.a.11.1
Level $126$
Weight $3$
Character 126.11
Analytic conductor $3.433$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [126,3,Mod(11,126)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(126, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 4])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("126.11"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 126.r (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.43325133094\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 11.1
Character \(\chi\) \(=\) 126.11
Dual form 126.3.r.a.23.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.41421i q^{2} +(-2.92705 + 0.657548i) q^{3} -2.00000 q^{4} +(2.90307 + 1.67609i) q^{5} +(0.929913 + 4.13948i) q^{6} +(5.64984 + 4.13271i) q^{7} +2.82843i q^{8} +(8.13526 - 3.84935i) q^{9} +(2.37035 - 4.10556i) q^{10} +(12.2880 - 7.09448i) q^{11} +(5.85410 - 1.31510i) q^{12} +(-8.31908 - 14.4091i) q^{13} +(5.84453 - 7.99008i) q^{14} +(-9.59954 - 2.99709i) q^{15} +4.00000 q^{16} +(13.5532 + 7.82495i) q^{17} +(-5.44381 - 11.5050i) q^{18} +(17.3162 + 29.9925i) q^{19} +(-5.80614 - 3.35218i) q^{20} +(-19.2548 - 8.38161i) q^{21} +(-10.0331 - 17.3779i) q^{22} +(22.7453 + 13.1320i) q^{23} +(-1.85983 - 8.27895i) q^{24} +(-6.88146 - 11.9190i) q^{25} +(-20.3775 + 11.7650i) q^{26} +(-21.2812 + 16.6166i) q^{27} +(-11.2997 - 8.26542i) q^{28} +(18.2368 + 10.5290i) q^{29} +(-4.23852 + 13.5758i) q^{30} -33.7477 q^{31} -5.65685i q^{32} +(-31.3027 + 28.8459i) q^{33} +(11.0662 - 19.1671i) q^{34} +(9.47510 + 21.4672i) q^{35} +(-16.2705 + 7.69871i) q^{36} +(-31.9815 - 55.3936i) q^{37} +(42.4158 - 24.4888i) q^{38} +(33.8250 + 36.7059i) q^{39} +(-4.74069 + 8.21112i) q^{40} +(5.44200 - 3.14194i) q^{41} +(-11.8534 + 27.2304i) q^{42} +(0.0742627 - 0.128627i) q^{43} +(-24.5760 + 14.1890i) q^{44} +(30.0691 + 2.46047i) q^{45} +(18.5715 - 32.1667i) q^{46} +41.9794i q^{47} +(-11.7082 + 2.63019i) q^{48} +(14.8414 + 46.6983i) q^{49} +(-16.8561 + 9.73185i) q^{50} +(-44.8162 - 13.9921i) q^{51} +(16.6382 + 28.8182i) q^{52} +(-38.6074 - 22.2900i) q^{53} +(23.4994 + 30.0962i) q^{54} +47.5639 q^{55} +(-11.6891 + 15.9802i) q^{56} +(-70.4069 - 76.4034i) q^{57} +(14.8903 - 25.7907i) q^{58} -41.4581i q^{59} +(19.1991 + 5.99418i) q^{60} +15.9995 q^{61} +47.7264i q^{62} +(61.8712 + 11.8724i) q^{63} -8.00000 q^{64} -55.7741i q^{65} +(40.7942 + 44.2686i) q^{66} -85.3249 q^{67} +(-27.1064 - 15.6499i) q^{68} +(-75.2116 - 23.4819i) q^{69} +(30.3592 - 13.3998i) q^{70} -56.4376i q^{71} +(10.8876 + 23.0100i) q^{72} +(4.42855 - 7.67047i) q^{73} +(-78.3383 + 45.2287i) q^{74} +(27.9797 + 30.3627i) q^{75} +(-34.6324 - 59.9850i) q^{76} +(98.7447 + 10.7001i) q^{77} +(51.9100 - 47.8358i) q^{78} +29.1408 q^{79} +(11.6123 + 6.70435i) q^{80} +(51.3650 - 62.6310i) q^{81} +(-4.44338 - 7.69616i) q^{82} +(-48.8531 - 28.2054i) q^{83} +(38.5097 + 16.7632i) q^{84} +(26.2306 + 45.4328i) q^{85} +(-0.181906 - 0.105023i) q^{86} +(-60.3033 - 18.8274i) q^{87} +(20.0662 + 34.7557i) q^{88} +(-5.43082 + 3.13549i) q^{89} +(3.47963 - 42.5241i) q^{90} +(12.5470 - 115.789i) q^{91} +(-45.4906 - 26.2640i) q^{92} +(98.7812 - 22.1907i) q^{93} +59.3679 q^{94} +116.094i q^{95} +(3.71965 + 16.5579i) q^{96} +(-32.1934 + 55.7605i) q^{97} +(66.0414 - 20.9889i) q^{98} +(72.6569 - 105.016i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 64 q^{4} + 8 q^{6} + 2 q^{7} - 20 q^{9} - 36 q^{11} + 10 q^{13} + 36 q^{14} + 10 q^{15} + 128 q^{16} - 54 q^{17} + 28 q^{19} + 28 q^{21} - 126 q^{23} - 16 q^{24} + 80 q^{25} - 72 q^{26} - 126 q^{27}+ \cdots + 394 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421i 0.707107i
\(3\) −2.92705 + 0.657548i −0.975684 + 0.219183i
\(4\) −2.00000 −0.500000
\(5\) 2.90307 + 1.67609i 0.580614 + 0.335218i 0.761377 0.648309i \(-0.224523\pi\)
−0.180763 + 0.983527i \(0.557857\pi\)
\(6\) 0.929913 + 4.13948i 0.154986 + 0.689913i
\(7\) 5.64984 + 4.13271i 0.807120 + 0.590387i
\(8\) 2.82843i 0.353553i
\(9\) 8.13526 3.84935i 0.903918 0.427706i
\(10\) 2.37035 4.10556i 0.237035 0.410556i
\(11\) 12.2880 7.09448i 1.11709 0.644953i 0.176434 0.984312i \(-0.443544\pi\)
0.940657 + 0.339360i \(0.110210\pi\)
\(12\) 5.85410 1.31510i 0.487842 0.109591i
\(13\) −8.31908 14.4091i −0.639930 1.10839i −0.985448 0.169978i \(-0.945630\pi\)
0.345518 0.938412i \(-0.387703\pi\)
\(14\) 5.84453 7.99008i 0.417467 0.570720i
\(15\) −9.59954 2.99709i −0.639970 0.199806i
\(16\) 4.00000 0.250000
\(17\) 13.5532 + 7.82495i 0.797248 + 0.460291i 0.842508 0.538684i \(-0.181078\pi\)
−0.0452601 + 0.998975i \(0.514412\pi\)
\(18\) −5.44381 11.5050i −0.302434 0.639166i
\(19\) 17.3162 + 29.9925i 0.911378 + 1.57855i 0.812120 + 0.583491i \(0.198314\pi\)
0.0992583 + 0.995062i \(0.468353\pi\)
\(20\) −5.80614 3.35218i −0.290307 0.167609i
\(21\) −19.2548 8.38161i −0.916897 0.399124i
\(22\) −10.0331 17.3779i −0.456050 0.789903i
\(23\) 22.7453 + 13.1320i 0.988926 + 0.570956i 0.904953 0.425512i \(-0.139906\pi\)
0.0839727 + 0.996468i \(0.473239\pi\)
\(24\) −1.85983 8.27895i −0.0774928 0.344956i
\(25\) −6.88146 11.9190i −0.275258 0.476761i
\(26\) −20.3775 + 11.7650i −0.783750 + 0.452499i
\(27\) −21.2812 + 16.6166i −0.788192 + 0.615429i
\(28\) −11.2997 8.26542i −0.403560 0.295194i
\(29\) 18.2368 + 10.5290i 0.628855 + 0.363069i 0.780308 0.625395i \(-0.215062\pi\)
−0.151454 + 0.988464i \(0.548395\pi\)
\(30\) −4.23852 + 13.5758i −0.141284 + 0.452527i
\(31\) −33.7477 −1.08863 −0.544317 0.838879i \(-0.683211\pi\)
−0.544317 + 0.838879i \(0.683211\pi\)
\(32\) 5.65685i 0.176777i
\(33\) −31.3027 + 28.8459i −0.948565 + 0.874117i
\(34\) 11.0662 19.1671i 0.325475 0.563739i
\(35\) 9.47510 + 21.4672i 0.270717 + 0.613348i
\(36\) −16.2705 + 7.69871i −0.451959 + 0.213853i
\(37\) −31.9815 55.3936i −0.864365 1.49712i −0.867677 0.497129i \(-0.834388\pi\)
0.00331203 0.999995i \(-0.498946\pi\)
\(38\) 42.4158 24.4888i 1.11621 0.644441i
\(39\) 33.8250 + 36.7059i 0.867309 + 0.941177i
\(40\) −4.74069 + 8.21112i −0.118517 + 0.205278i
\(41\) 5.44200 3.14194i 0.132732 0.0766328i −0.432164 0.901795i \(-0.642250\pi\)
0.564896 + 0.825162i \(0.308916\pi\)
\(42\) −11.8534 + 27.2304i −0.282224 + 0.648344i
\(43\) 0.0742627 0.128627i 0.00172704 0.00299132i −0.865161 0.501495i \(-0.832784\pi\)
0.866888 + 0.498504i \(0.166117\pi\)
\(44\) −24.5760 + 14.1890i −0.558545 + 0.322476i
\(45\) 30.0691 + 2.46047i 0.668202 + 0.0546772i
\(46\) 18.5715 32.1667i 0.403727 0.699276i
\(47\) 41.9794i 0.893179i 0.894739 + 0.446590i \(0.147362\pi\)
−0.894739 + 0.446590i \(0.852638\pi\)
\(48\) −11.7082 + 2.63019i −0.243921 + 0.0547957i
\(49\) 14.8414 + 46.6983i 0.302886 + 0.953027i
\(50\) −16.8561 + 9.73185i −0.337121 + 0.194637i
\(51\) −44.8162 13.9921i −0.878750 0.274356i
\(52\) 16.6382 + 28.8182i 0.319965 + 0.554195i
\(53\) −38.6074 22.2900i −0.728442 0.420566i 0.0894100 0.995995i \(-0.471502\pi\)
−0.817852 + 0.575429i \(0.804835\pi\)
\(54\) 23.4994 + 30.0962i 0.435174 + 0.557336i
\(55\) 47.5639 0.864798
\(56\) −11.6891 + 15.9802i −0.208733 + 0.285360i
\(57\) −70.4069 76.4034i −1.23521 1.34041i
\(58\) 14.8903 25.7907i 0.256729 0.444667i
\(59\) 41.4581i 0.702679i −0.936248 0.351340i \(-0.885726\pi\)
0.936248 0.351340i \(-0.114274\pi\)
\(60\) 19.1991 + 5.99418i 0.319985 + 0.0999030i
\(61\) 15.9995 0.262287 0.131144 0.991363i \(-0.458135\pi\)
0.131144 + 0.991363i \(0.458135\pi\)
\(62\) 47.7264i 0.769781i
\(63\) 61.8712 + 11.8724i 0.982083 + 0.188451i
\(64\) −8.00000 −0.125000
\(65\) 55.7741i 0.858063i
\(66\) 40.7942 + 44.2686i 0.618094 + 0.670737i
\(67\) −85.3249 −1.27351 −0.636753 0.771068i \(-0.719723\pi\)
−0.636753 + 0.771068i \(0.719723\pi\)
\(68\) −27.1064 15.6499i −0.398624 0.230146i
\(69\) −75.2116 23.4819i −1.09002 0.340318i
\(70\) 30.3592 13.3998i 0.433702 0.191426i
\(71\) 56.4376i 0.794896i −0.917625 0.397448i \(-0.869896\pi\)
0.917625 0.397448i \(-0.130104\pi\)
\(72\) 10.8876 + 23.0100i 0.151217 + 0.319583i
\(73\) 4.42855 7.67047i 0.0606650 0.105075i −0.834098 0.551617i \(-0.814011\pi\)
0.894763 + 0.446542i \(0.147345\pi\)
\(74\) −78.3383 + 45.2287i −1.05863 + 0.611198i
\(75\) 27.9797 + 30.3627i 0.373063 + 0.404836i
\(76\) −34.6324 59.9850i −0.455689 0.789276i
\(77\) 98.7447 + 10.7001i 1.28240 + 0.138962i
\(78\) 51.9100 47.8358i 0.665513 0.613280i
\(79\) 29.1408 0.368870 0.184435 0.982845i \(-0.440954\pi\)
0.184435 + 0.982845i \(0.440954\pi\)
\(80\) 11.6123 + 6.70435i 0.145153 + 0.0838044i
\(81\) 51.3650 62.6310i 0.634135 0.773222i
\(82\) −4.44338 7.69616i −0.0541875 0.0938556i
\(83\) −48.8531 28.2054i −0.588592 0.339824i 0.175949 0.984399i \(-0.443701\pi\)
−0.764540 + 0.644576i \(0.777034\pi\)
\(84\) 38.5097 + 16.7632i 0.458448 + 0.199562i
\(85\) 26.2306 + 45.4328i 0.308595 + 0.534503i
\(86\) −0.181906 0.105023i −0.00211518 0.00122120i
\(87\) −60.3033 18.8274i −0.693142 0.216407i
\(88\) 20.0662 + 34.7557i 0.228025 + 0.394951i
\(89\) −5.43082 + 3.13549i −0.0610205 + 0.0352302i −0.530200 0.847873i \(-0.677883\pi\)
0.469179 + 0.883103i \(0.344550\pi\)
\(90\) 3.47963 42.5241i 0.0386626 0.472490i
\(91\) 12.5470 115.789i 0.137879 1.27241i
\(92\) −45.4906 26.2640i −0.494463 0.285478i
\(93\) 98.7812 22.1907i 1.06216 0.238610i
\(94\) 59.3679 0.631573
\(95\) 116.094i 1.22204i
\(96\) 3.71965 + 16.5579i 0.0387464 + 0.172478i
\(97\) −32.1934 + 55.7605i −0.331890 + 0.574851i −0.982883 0.184233i \(-0.941020\pi\)
0.650992 + 0.759084i \(0.274353\pi\)
\(98\) 66.0414 20.9889i 0.673892 0.214173i
\(99\) 72.6569 105.016i 0.733908 1.06077i
\(100\) 13.7629 + 23.8381i 0.137629 + 0.238381i
\(101\) 80.7285 46.6086i 0.799292 0.461472i −0.0439314 0.999035i \(-0.513988\pi\)
0.843224 + 0.537563i \(0.180655\pi\)
\(102\) −19.7879 + 63.3797i −0.193999 + 0.621370i
\(103\) −64.5523 + 111.808i −0.626721 + 1.08551i 0.361484 + 0.932378i \(0.382270\pi\)
−0.988205 + 0.153135i \(0.951063\pi\)
\(104\) 40.7550 23.5299i 0.391875 0.226249i
\(105\) −41.8498 56.6052i −0.398570 0.539097i
\(106\) −31.5228 + 54.5991i −0.297385 + 0.515086i
\(107\) 92.8758 53.6219i 0.867998 0.501139i 0.00131550 0.999999i \(-0.499581\pi\)
0.866682 + 0.498860i \(0.166248\pi\)
\(108\) 42.5624 33.2332i 0.394096 0.307714i
\(109\) −16.5505 + 28.6662i −0.151839 + 0.262993i −0.931904 0.362706i \(-0.881853\pi\)
0.780064 + 0.625699i \(0.215186\pi\)
\(110\) 67.2655i 0.611505i
\(111\) 130.035 + 141.110i 1.17149 + 1.27127i
\(112\) 22.5994 + 16.5308i 0.201780 + 0.147597i
\(113\) −146.122 + 84.3635i −1.29311 + 0.746580i −0.979205 0.202874i \(-0.934972\pi\)
−0.313909 + 0.949453i \(0.601639\pi\)
\(114\) −108.051 + 99.5703i −0.947813 + 0.873424i
\(115\) 44.0208 + 76.2462i 0.382789 + 0.663011i
\(116\) −36.4736 21.0580i −0.314427 0.181535i
\(117\) −123.144 85.1985i −1.05251 0.728192i
\(118\) −58.6306 −0.496869
\(119\) 44.2353 + 100.221i 0.371725 + 0.842195i
\(120\) 8.47705 27.1516i 0.0706421 0.226263i
\(121\) 40.1633 69.5649i 0.331928 0.574916i
\(122\) 22.6267i 0.185465i
\(123\) −13.8630 + 12.7750i −0.112708 + 0.103862i
\(124\) 67.4954 0.544317
\(125\) 129.940i 1.03952i
\(126\) 16.7902 87.4991i 0.133255 0.694437i
\(127\) 75.2845 0.592792 0.296396 0.955065i \(-0.404215\pi\)
0.296396 + 0.955065i \(0.404215\pi\)
\(128\) 11.3137i 0.0883883i
\(129\) −0.132792 + 0.425328i −0.00102940 + 0.00329712i
\(130\) −78.8765 −0.606742
\(131\) −135.527 78.2467i −1.03456 0.597303i −0.116272 0.993217i \(-0.537094\pi\)
−0.918288 + 0.395914i \(0.870428\pi\)
\(132\) 62.6053 57.6917i 0.474283 0.437058i
\(133\) −26.1166 + 241.016i −0.196366 + 1.81215i
\(134\) 120.668i 0.900505i
\(135\) −89.6317 + 12.5699i −0.663938 + 0.0931106i
\(136\) −22.1323 + 38.3343i −0.162738 + 0.281870i
\(137\) −71.6146 + 41.3467i −0.522734 + 0.301801i −0.738053 0.674743i \(-0.764254\pi\)
0.215318 + 0.976544i \(0.430921\pi\)
\(138\) −33.2084 + 106.365i −0.240641 + 0.770762i
\(139\) 50.4535 + 87.3880i 0.362975 + 0.628690i 0.988449 0.151554i \(-0.0484279\pi\)
−0.625474 + 0.780245i \(0.715095\pi\)
\(140\) −18.9502 42.9344i −0.135359 0.306674i
\(141\) −27.6035 122.876i −0.195769 0.871461i
\(142\) −79.8148 −0.562076
\(143\) −204.450 118.039i −1.42972 0.825449i
\(144\) 32.5410 15.3974i 0.225979 0.106926i
\(145\) 35.2951 + 61.1329i 0.243415 + 0.421606i
\(146\) −10.8477 6.26291i −0.0742992 0.0428967i
\(147\) −74.1480 126.929i −0.504408 0.863465i
\(148\) 63.9630 + 110.787i 0.432182 + 0.748562i
\(149\) 104.181 + 60.1490i 0.699203 + 0.403685i 0.807050 0.590483i \(-0.201063\pi\)
−0.107848 + 0.994167i \(0.534396\pi\)
\(150\) 42.9394 39.5693i 0.286263 0.263795i
\(151\) −36.8571 63.8384i −0.244087 0.422771i 0.717788 0.696262i \(-0.245155\pi\)
−0.961875 + 0.273491i \(0.911822\pi\)
\(152\) −84.8316 + 48.9776i −0.558103 + 0.322221i
\(153\) 140.380 + 11.4869i 0.917516 + 0.0750779i
\(154\) 15.1322 139.646i 0.0982608 0.906793i
\(155\) −97.9719 56.5641i −0.632077 0.364930i
\(156\) −67.6501 73.4118i −0.433654 0.470589i
\(157\) −263.591 −1.67893 −0.839463 0.543417i \(-0.817130\pi\)
−0.839463 + 0.543417i \(0.817130\pi\)
\(158\) 41.2113i 0.260831i
\(159\) 127.663 + 39.8578i 0.802910 + 0.250678i
\(160\) 9.48139 16.4222i 0.0592587 0.102639i
\(161\) 74.2365 + 168.193i 0.461097 + 1.04468i
\(162\) −88.5736 72.6410i −0.546751 0.448401i
\(163\) −36.3832 63.0176i −0.223210 0.386611i 0.732571 0.680691i \(-0.238320\pi\)
−0.955781 + 0.294080i \(0.904987\pi\)
\(164\) −10.8840 + 6.28389i −0.0663659 + 0.0383164i
\(165\) −139.222 + 31.2755i −0.843770 + 0.189549i
\(166\) −39.8884 + 69.0887i −0.240292 + 0.416197i
\(167\) −172.653 + 99.6811i −1.03385 + 0.596893i −0.918085 0.396384i \(-0.870265\pi\)
−0.115764 + 0.993277i \(0.536932\pi\)
\(168\) 23.7068 54.4609i 0.141112 0.324172i
\(169\) −53.9143 + 93.3824i −0.319020 + 0.552558i
\(170\) 64.2516 37.0957i 0.377951 0.218210i
\(171\) 256.323 + 177.341i 1.49897 + 1.03708i
\(172\) −0.148525 + 0.257253i −0.000863519 + 0.00149566i
\(173\) 249.497i 1.44218i −0.692841 0.721090i \(-0.743641\pi\)
0.692841 0.721090i \(-0.256359\pi\)
\(174\) −26.6260 + 85.2818i −0.153023 + 0.490125i
\(175\) 10.3788 95.7797i 0.0593072 0.547313i
\(176\) 49.1520 28.3779i 0.279273 0.161238i
\(177\) 27.2607 + 121.350i 0.154015 + 0.685593i
\(178\) 4.43425 + 7.68034i 0.0249115 + 0.0431480i
\(179\) 178.420 + 103.011i 0.996760 + 0.575479i 0.907288 0.420510i \(-0.138149\pi\)
0.0894717 + 0.995989i \(0.471482\pi\)
\(180\) −60.1382 4.92095i −0.334101 0.0273386i
\(181\) −68.0662 −0.376056 −0.188028 0.982164i \(-0.560210\pi\)
−0.188028 + 0.982164i \(0.560210\pi\)
\(182\) −163.751 17.7442i −0.899730 0.0974955i
\(183\) −46.8314 + 10.5205i −0.255909 + 0.0574888i
\(184\) −37.1429 + 64.3334i −0.201864 + 0.349638i
\(185\) 214.415i 1.15900i
\(186\) −31.3824 139.698i −0.168723 0.751063i
\(187\) 222.056 1.18746
\(188\) 83.9588i 0.446590i
\(189\) −188.907 + 5.93205i −0.999507 + 0.0313865i
\(190\) 164.181 0.864113
\(191\) 258.142i 1.35153i 0.737117 + 0.675765i \(0.236187\pi\)
−0.737117 + 0.675765i \(0.763813\pi\)
\(192\) 23.4164 5.26038i 0.121960 0.0273978i
\(193\) 159.600 0.826945 0.413473 0.910516i \(-0.364316\pi\)
0.413473 + 0.910516i \(0.364316\pi\)
\(194\) 78.8573 + 45.5283i 0.406481 + 0.234682i
\(195\) 36.6741 + 163.254i 0.188072 + 0.837198i
\(196\) −29.6828 93.3966i −0.151443 0.476513i
\(197\) 173.797i 0.882219i −0.897453 0.441109i \(-0.854585\pi\)
0.897453 0.441109i \(-0.145415\pi\)
\(198\) −148.515 102.752i −0.750078 0.518952i
\(199\) 48.3082 83.6723i 0.242755 0.420464i −0.718743 0.695276i \(-0.755282\pi\)
0.961498 + 0.274812i \(0.0886156\pi\)
\(200\) 33.7121 19.4637i 0.168561 0.0973185i
\(201\) 249.751 56.1052i 1.24254 0.279131i
\(202\) −65.9146 114.167i −0.326310 0.565185i
\(203\) 59.5216 + 134.855i 0.293210 + 0.664308i
\(204\) 89.6325 + 27.9843i 0.439375 + 0.137178i
\(205\) 21.0647 0.102755
\(206\) 158.120 + 91.2907i 0.767574 + 0.443159i
\(207\) 235.589 + 19.2776i 1.13811 + 0.0931284i
\(208\) −33.2763 57.6363i −0.159982 0.277098i
\(209\) 425.562 + 245.699i 2.03618 + 1.17559i
\(210\) −80.0518 + 59.1846i −0.381199 + 0.281831i
\(211\) 8.68169 + 15.0371i 0.0411455 + 0.0712660i 0.885865 0.463944i \(-0.153566\pi\)
−0.844719 + 0.535210i \(0.820233\pi\)
\(212\) 77.2148 + 44.5800i 0.364221 + 0.210283i
\(213\) 37.1104 + 165.196i 0.174227 + 0.775567i
\(214\) −75.8328 131.346i −0.354359 0.613767i
\(215\) 0.431179 0.248942i 0.00200549 0.00115787i
\(216\) −46.9988 60.1923i −0.217587 0.278668i
\(217\) −190.669 139.469i −0.878659 0.642716i
\(218\) 40.5402 + 23.4059i 0.185964 + 0.107366i
\(219\) −7.91889 + 25.3638i −0.0361593 + 0.115817i
\(220\) −95.1278 −0.432399
\(221\) 260.386i 1.17822i
\(222\) 199.560 183.898i 0.898920 0.828369i
\(223\) 147.273 255.085i 0.660418 1.14388i −0.320088 0.947388i \(-0.603713\pi\)
0.980506 0.196489i \(-0.0629541\pi\)
\(224\) 23.3781 31.9603i 0.104367 0.142680i
\(225\) −101.863 70.4753i −0.452725 0.313223i
\(226\) 119.308 + 206.648i 0.527912 + 0.914370i
\(227\) −194.224 + 112.135i −0.855612 + 0.493988i −0.862541 0.505988i \(-0.831128\pi\)
0.00692812 + 0.999976i \(0.497795\pi\)
\(228\) 140.814 + 152.807i 0.617604 + 0.670205i
\(229\) 51.7349 89.6074i 0.225916 0.391299i −0.730678 0.682723i \(-0.760796\pi\)
0.956594 + 0.291424i \(0.0941290\pi\)
\(230\) 107.828 62.2548i 0.468819 0.270673i
\(231\) −296.067 + 33.6098i −1.28167 + 0.145497i
\(232\) −29.7805 + 51.5814i −0.128364 + 0.222334i
\(233\) −187.439 + 108.218i −0.804457 + 0.464454i −0.845027 0.534723i \(-0.820416\pi\)
0.0405700 + 0.999177i \(0.487083\pi\)
\(234\) −120.489 + 174.151i −0.514910 + 0.744236i
\(235\) −70.3612 + 121.869i −0.299409 + 0.518592i
\(236\) 82.9162i 0.351340i
\(237\) −85.2965 + 19.1614i −0.359901 + 0.0808500i
\(238\) 141.734 62.5581i 0.595522 0.262849i
\(239\) −387.074 + 223.477i −1.61956 + 0.935052i −0.632524 + 0.774541i \(0.717981\pi\)
−0.987034 + 0.160511i \(0.948686\pi\)
\(240\) −38.3982 11.9884i −0.159992 0.0499515i
\(241\) 41.3755 + 71.6645i 0.171683 + 0.297363i 0.939008 0.343895i \(-0.111746\pi\)
−0.767326 + 0.641258i \(0.778413\pi\)
\(242\) −98.3796 56.7995i −0.406527 0.234709i
\(243\) −109.165 + 217.099i −0.449239 + 0.893412i
\(244\) −31.9991 −0.131144
\(245\) −35.1848 + 160.444i −0.143611 + 0.654873i
\(246\) 18.0666 + 19.6053i 0.0734414 + 0.0796964i
\(247\) 288.110 499.020i 1.16644 2.02033i
\(248\) 95.4529i 0.384891i
\(249\) 161.542 + 50.4353i 0.648763 + 0.202551i
\(250\) −183.763 −0.735052
\(251\) 228.368i 0.909831i −0.890535 0.454916i \(-0.849669\pi\)
0.890535 0.454916i \(-0.150331\pi\)
\(252\) −123.742 23.7449i −0.491041 0.0942257i
\(253\) 372.659 1.47296
\(254\) 106.468i 0.419167i
\(255\) −106.653 115.736i −0.418245 0.453867i
\(256\) 16.0000 0.0625000
\(257\) 66.3878 + 38.3290i 0.258318 + 0.149140i 0.623567 0.781770i \(-0.285683\pi\)
−0.365249 + 0.930910i \(0.619016\pi\)
\(258\) 0.601505 + 0.187797i 0.00233142 + 0.000727895i
\(259\) 48.2352 445.135i 0.186236 1.71867i
\(260\) 111.548i 0.429031i
\(261\) 188.891 + 15.4564i 0.723720 + 0.0592201i
\(262\) −110.658 + 191.665i −0.422357 + 0.731544i
\(263\) 306.958 177.222i 1.16714 0.673849i 0.214136 0.976804i \(-0.431306\pi\)
0.953005 + 0.302955i \(0.0979731\pi\)
\(264\) −81.5884 88.5373i −0.309047 0.335368i
\(265\) −74.7200 129.419i −0.281962 0.488373i
\(266\) 340.848 + 36.9345i 1.28138 + 0.138852i
\(267\) 13.8346 12.7488i 0.0518149 0.0477482i
\(268\) 170.650 0.636753
\(269\) −87.8658 50.7294i −0.326639 0.188585i 0.327709 0.944779i \(-0.393723\pi\)
−0.654348 + 0.756194i \(0.727057\pi\)
\(270\) 17.7766 + 126.758i 0.0658392 + 0.469475i
\(271\) −37.9220 65.6829i −0.139934 0.242372i 0.787538 0.616267i \(-0.211356\pi\)
−0.927471 + 0.373894i \(0.878022\pi\)
\(272\) 54.2129 + 31.2998i 0.199312 + 0.115073i
\(273\) 39.4113 + 347.172i 0.144364 + 1.27169i
\(274\) 58.4731 + 101.278i 0.213405 + 0.369629i
\(275\) −169.119 97.6407i −0.614977 0.355057i
\(276\) 150.423 + 46.9638i 0.545011 + 0.170159i
\(277\) −134.061 232.200i −0.483973 0.838266i 0.515857 0.856674i \(-0.327473\pi\)
−0.999831 + 0.0184083i \(0.994140\pi\)
\(278\) 123.585 71.3520i 0.444551 0.256662i
\(279\) −274.546 + 129.907i −0.984037 + 0.465616i
\(280\) −60.7183 + 26.7996i −0.216851 + 0.0957130i
\(281\) 423.951 + 244.768i 1.50872 + 0.871060i 0.999948 + 0.0101594i \(0.00323390\pi\)
0.508773 + 0.860901i \(0.330099\pi\)
\(282\) −173.773 + 39.0372i −0.616216 + 0.138430i
\(283\) −523.237 −1.84889 −0.924446 0.381312i \(-0.875472\pi\)
−0.924446 + 0.381312i \(0.875472\pi\)
\(284\) 112.875i 0.397448i
\(285\) −76.3372 339.812i −0.267850 1.19232i
\(286\) −166.933 + 289.136i −0.583680 + 1.01096i
\(287\) 43.7312 + 4.73875i 0.152374 + 0.0165113i
\(288\) −21.7752 46.0200i −0.0756084 0.159792i
\(289\) −22.0403 38.1749i −0.0762639 0.132093i
\(290\) 86.4550 49.9148i 0.298121 0.172120i
\(291\) 57.5664 184.383i 0.197823 0.633617i
\(292\) −8.85710 + 15.3409i −0.0303325 + 0.0525375i
\(293\) 64.1639 37.0450i 0.218989 0.126434i −0.386493 0.922292i \(-0.626314\pi\)
0.605482 + 0.795859i \(0.292980\pi\)
\(294\) −179.505 + 104.861i −0.610562 + 0.356670i
\(295\) 69.4874 120.356i 0.235551 0.407985i
\(296\) 156.677 90.4573i 0.529313 0.305599i
\(297\) −143.617 + 355.164i −0.483560 + 1.19584i
\(298\) 85.0636 147.334i 0.285448 0.494411i
\(299\) 436.985i 1.46149i
\(300\) −55.9594 60.7255i −0.186531 0.202418i
\(301\) 0.951149 0.419815i 0.00315996 0.00139473i
\(302\) −90.2811 + 52.1238i −0.298944 + 0.172596i
\(303\) −205.649 + 189.509i −0.678710 + 0.625441i
\(304\) 69.2647 + 119.970i 0.227844 + 0.394638i
\(305\) 46.4477 + 26.8166i 0.152288 + 0.0879233i
\(306\) 16.2449 198.527i 0.0530881 0.648782i
\(307\) −159.112 −0.518280 −0.259140 0.965840i \(-0.583439\pi\)
−0.259140 + 0.965840i \(0.583439\pi\)
\(308\) −197.489 21.4001i −0.641199 0.0694808i
\(309\) 115.429 369.714i 0.373556 1.19648i
\(310\) −79.9937 + 138.553i −0.258044 + 0.446946i
\(311\) 446.556i 1.43587i −0.696109 0.717936i \(-0.745087\pi\)
0.696109 0.717936i \(-0.254913\pi\)
\(312\) −103.820 + 95.6717i −0.332756 + 0.306640i
\(313\) −196.307 −0.627178 −0.313589 0.949559i \(-0.601531\pi\)
−0.313589 + 0.949559i \(0.601531\pi\)
\(314\) 372.774i 1.18718i
\(315\) 159.717 + 138.168i 0.507039 + 0.438629i
\(316\) −58.2815 −0.184435
\(317\) 340.779i 1.07501i 0.843260 + 0.537506i \(0.180633\pi\)
−0.843260 + 0.537506i \(0.819367\pi\)
\(318\) 56.3674 180.542i 0.177256 0.567743i
\(319\) 298.791 0.936650
\(320\) −23.2246 13.4087i −0.0725767 0.0419022i
\(321\) −236.593 + 218.024i −0.737051 + 0.679203i
\(322\) 237.861 104.986i 0.738700 0.326044i
\(323\) 541.993i 1.67800i
\(324\) −102.730 + 125.262i −0.317068 + 0.386611i
\(325\) −114.495 + 198.311i −0.352292 + 0.610187i
\(326\) −89.1204 + 51.4537i −0.273375 + 0.157833i
\(327\) 29.5946 94.7903i 0.0905034 0.289879i
\(328\) 8.88676 + 15.3923i 0.0270938 + 0.0469278i
\(329\) −173.489 + 237.177i −0.527322 + 0.720903i
\(330\) 44.2303 + 196.890i 0.134031 + 0.596635i
\(331\) −563.578 −1.70265 −0.851326 0.524638i \(-0.824201\pi\)
−0.851326 + 0.524638i \(0.824201\pi\)
\(332\) 97.7062 + 56.4107i 0.294296 + 0.169912i
\(333\) −473.407 327.533i −1.42164 0.983583i
\(334\) 140.970 + 244.168i 0.422067 + 0.731041i
\(335\) −247.704 143.012i −0.739416 0.426902i
\(336\) −77.0193 33.5265i −0.229224 0.0997811i
\(337\) 303.340 + 525.401i 0.900119 + 1.55905i 0.827338 + 0.561704i \(0.189854\pi\)
0.0727808 + 0.997348i \(0.476813\pi\)
\(338\) 132.063 + 76.2464i 0.390718 + 0.225581i
\(339\) 372.233 343.018i 1.09803 1.01185i
\(340\) −52.4612 90.8655i −0.154298 0.267252i
\(341\) −414.692 + 239.422i −1.21610 + 0.702118i
\(342\) 250.798 362.496i 0.733327 1.05993i
\(343\) −109.139 + 325.173i −0.318189 + 0.948027i
\(344\) 0.363811 + 0.210047i 0.00105759 + 0.000610600i
\(345\) −178.987 194.231i −0.518802 0.562988i
\(346\) −352.842 −1.01978
\(347\) 52.3842i 0.150963i 0.997147 + 0.0754816i \(0.0240494\pi\)
−0.997147 + 0.0754816i \(0.975951\pi\)
\(348\) 120.607 + 37.6548i 0.346571 + 0.108203i
\(349\) −4.33946 + 7.51616i −0.0124340 + 0.0215363i −0.872175 0.489193i \(-0.837291\pi\)
0.859741 + 0.510729i \(0.170625\pi\)
\(350\) −135.453 14.6778i −0.387008 0.0419365i
\(351\) 416.470 + 168.408i 1.18652 + 0.479794i
\(352\) −40.1324 69.5114i −0.114013 0.197476i
\(353\) 103.990 60.0388i 0.294590 0.170082i −0.345420 0.938448i \(-0.612264\pi\)
0.640010 + 0.768367i \(0.278930\pi\)
\(354\) 171.615 38.5524i 0.484787 0.108905i
\(355\) 94.5944 163.842i 0.266463 0.461528i
\(356\) 10.8616 6.27097i 0.0305102 0.0176151i
\(357\) −195.379 264.266i −0.547280 0.740241i
\(358\) 145.679 252.324i 0.406925 0.704816i
\(359\) 101.066 58.3503i 0.281520 0.162536i −0.352591 0.935777i \(-0.614699\pi\)
0.634111 + 0.773242i \(0.281366\pi\)
\(360\) −6.95927 + 85.0482i −0.0193313 + 0.236245i
\(361\) −419.200 + 726.076i −1.16122 + 2.01129i
\(362\) 96.2602i 0.265912i
\(363\) −71.8178 + 230.029i −0.197845 + 0.633690i
\(364\) −25.0940 + 231.579i −0.0689397 + 0.636205i
\(365\) 25.7128 14.8453i 0.0704459 0.0406720i
\(366\) 14.8782 + 66.2297i 0.0406507 + 0.180955i
\(367\) −148.299 256.861i −0.404085 0.699895i 0.590130 0.807308i \(-0.299077\pi\)
−0.994214 + 0.107413i \(0.965743\pi\)
\(368\) 90.9812 + 52.5280i 0.247231 + 0.142739i
\(369\) 32.1777 46.5087i 0.0872024 0.126040i
\(370\) −303.229 −0.819538
\(371\) −126.008 285.488i −0.339643 0.769510i
\(372\) −197.562 + 44.3814i −0.531082 + 0.119305i
\(373\) 208.053 360.359i 0.557783 0.966109i −0.439898 0.898048i \(-0.644985\pi\)
0.997681 0.0680609i \(-0.0216812\pi\)
\(374\) 314.034i 0.839664i
\(375\) 85.4419 + 380.341i 0.227845 + 1.01424i
\(376\) −118.736 −0.315787
\(377\) 350.367i 0.929355i
\(378\) 8.38918 + 267.155i 0.0221936 + 0.706758i
\(379\) 315.897 0.833501 0.416750 0.909021i \(-0.363169\pi\)
0.416750 + 0.909021i \(0.363169\pi\)
\(380\) 232.188i 0.611020i
\(381\) −220.362 + 49.5032i −0.578377 + 0.129930i
\(382\) 365.068 0.955676
\(383\) 348.813 + 201.387i 0.910740 + 0.525816i 0.880669 0.473732i \(-0.157093\pi\)
0.0300707 + 0.999548i \(0.490427\pi\)
\(384\) −7.43931 33.1158i −0.0193732 0.0862391i
\(385\) 268.729 + 196.568i 0.697996 + 0.510566i
\(386\) 225.709i 0.584739i
\(387\) 0.109017 1.33228i 0.000281696 0.00344257i
\(388\) 64.3867 111.521i 0.165945 0.287425i
\(389\) 314.791 181.745i 0.809232 0.467210i −0.0374573 0.999298i \(-0.511926\pi\)
0.846689 + 0.532088i \(0.178592\pi\)
\(390\) 230.875 51.8651i 0.591988 0.132987i
\(391\) 205.515 + 355.962i 0.525613 + 0.910388i
\(392\) −132.083 + 41.9779i −0.336946 + 0.107086i
\(393\) 448.146 + 139.916i 1.14032 + 0.356022i
\(394\) −245.786 −0.623823
\(395\) 84.5977 + 48.8425i 0.214171 + 0.123652i
\(396\) −145.314 + 210.033i −0.366954 + 0.530385i
\(397\) 32.4146 + 56.1437i 0.0816489 + 0.141420i 0.903958 0.427621i \(-0.140648\pi\)
−0.822309 + 0.569041i \(0.807315\pi\)
\(398\) −118.330 68.3181i −0.297313 0.171654i
\(399\) −82.0346 722.638i −0.205600 1.81112i
\(400\) −27.5258 47.6761i −0.0688146 0.119190i
\(401\) 430.383 + 248.482i 1.07328 + 0.619656i 0.929074 0.369893i \(-0.120606\pi\)
0.144201 + 0.989548i \(0.453939\pi\)
\(402\) −79.3448 353.201i −0.197375 0.878608i
\(403\) 280.750 + 486.273i 0.696650 + 1.20663i
\(404\) −161.457 + 93.2173i −0.399646 + 0.230736i
\(405\) 254.091 95.7300i 0.627385 0.236370i
\(406\) 190.713 84.1762i 0.469737 0.207331i
\(407\) −785.977 453.784i −1.93115 1.11495i
\(408\) 39.5758 126.759i 0.0969994 0.310685i
\(409\) 493.994 1.20781 0.603905 0.797056i \(-0.293611\pi\)
0.603905 + 0.797056i \(0.293611\pi\)
\(410\) 29.7900i 0.0726585i
\(411\) 182.432 168.114i 0.443874 0.409036i
\(412\) 129.105 223.616i 0.313361 0.542757i
\(413\) 171.334 234.232i 0.414853 0.567147i
\(414\) 27.2626 333.173i 0.0658517 0.804765i
\(415\) −94.5493 163.764i −0.227830 0.394613i
\(416\) −81.5100 + 47.0598i −0.195938 + 0.113125i
\(417\) −205.142 222.613i −0.491946 0.533845i
\(418\) 347.470 601.836i 0.831269 1.43980i
\(419\) 229.187 132.321i 0.546987 0.315803i −0.200919 0.979608i \(-0.564393\pi\)
0.747906 + 0.663805i \(0.231060\pi\)
\(420\) 83.6996 + 113.210i 0.199285 + 0.269549i
\(421\) −41.2156 + 71.3876i −0.0978994 + 0.169567i −0.910815 0.412815i \(-0.864546\pi\)
0.812916 + 0.582382i \(0.197879\pi\)
\(422\) 21.2657 12.2778i 0.0503927 0.0290942i
\(423\) 161.594 + 341.514i 0.382018 + 0.807361i
\(424\) 63.0456 109.198i 0.148693 0.257543i
\(425\) 215.388i 0.506796i
\(426\) 233.622 52.4821i 0.548409 0.123197i
\(427\) 90.3948 + 66.1214i 0.211697 + 0.154851i
\(428\) −185.752 + 107.244i −0.433999 + 0.250569i
\(429\) 676.052 + 211.071i 1.57588 + 0.492007i
\(430\) −0.352057 0.609780i −0.000818736 0.00141809i
\(431\) −409.848 236.626i −0.950924 0.549016i −0.0575561 0.998342i \(-0.518331\pi\)
−0.893368 + 0.449326i \(0.851664\pi\)
\(432\) −85.1248 + 66.4663i −0.197048 + 0.153857i
\(433\) 140.867 0.325328 0.162664 0.986681i \(-0.447991\pi\)
0.162664 + 0.986681i \(0.447991\pi\)
\(434\) −197.239 + 269.647i −0.454469 + 0.621306i
\(435\) −143.508 155.731i −0.329904 0.358002i
\(436\) 33.1009 57.3325i 0.0759195 0.131497i
\(437\) 909.584i 2.08143i
\(438\) 35.8699 + 11.1990i 0.0818947 + 0.0255685i
\(439\) −255.155 −0.581218 −0.290609 0.956842i \(-0.593858\pi\)
−0.290609 + 0.956842i \(0.593858\pi\)
\(440\) 134.531i 0.305752i
\(441\) 300.497 + 322.773i 0.681399 + 0.731912i
\(442\) −368.241 −0.833124
\(443\) 466.380i 1.05278i 0.850244 + 0.526388i \(0.176454\pi\)
−0.850244 + 0.526388i \(0.823546\pi\)
\(444\) −260.071 282.221i −0.585745 0.635633i
\(445\) −21.0214 −0.0472391
\(446\) −360.744 208.276i −0.808843 0.466986i
\(447\) −344.495 107.555i −0.770681 0.240616i
\(448\) −45.1987 33.0617i −0.100890 0.0737984i
\(449\) 383.226i 0.853509i −0.904367 0.426755i \(-0.859657\pi\)
0.904367 0.426755i \(-0.140343\pi\)
\(450\) −99.6671 + 144.056i −0.221482 + 0.320125i
\(451\) 44.5809 77.2164i 0.0988490 0.171212i
\(452\) 292.244 168.727i 0.646557 0.373290i
\(453\) 149.860 + 162.623i 0.330816 + 0.358991i
\(454\) 158.583 + 274.674i 0.349302 + 0.605009i
\(455\) 230.498 315.115i 0.506589 0.692560i
\(456\) 216.101 199.141i 0.473907 0.436712i
\(457\) −483.494 −1.05797 −0.528987 0.848630i \(-0.677428\pi\)
−0.528987 + 0.848630i \(0.677428\pi\)
\(458\) −126.724 73.1641i −0.276690 0.159747i
\(459\) −418.452 + 58.6838i −0.911661 + 0.127851i
\(460\) −88.0416 152.492i −0.191395 0.331505i
\(461\) −391.665 226.128i −0.849599 0.490516i 0.0109166 0.999940i \(-0.496525\pi\)
−0.860516 + 0.509424i \(0.829858\pi\)
\(462\) 47.5314 + 418.701i 0.102882 + 0.906280i
\(463\) −157.167 272.221i −0.339454 0.587951i 0.644876 0.764287i \(-0.276909\pi\)
−0.984330 + 0.176336i \(0.943575\pi\)
\(464\) 72.9471 + 42.1160i 0.157214 + 0.0907673i
\(465\) 323.962 + 101.145i 0.696693 + 0.217516i
\(466\) 153.043 + 265.078i 0.328418 + 0.568837i
\(467\) 258.779 149.406i 0.554130 0.319927i −0.196656 0.980473i \(-0.563008\pi\)
0.750786 + 0.660545i \(0.229675\pi\)
\(468\) 246.287 + 170.397i 0.526255 + 0.364096i
\(469\) −482.072 352.623i −1.02787 0.751862i
\(470\) 172.349 + 99.5058i 0.366700 + 0.211714i
\(471\) 771.545 173.324i 1.63810 0.367991i
\(472\) 117.261 0.248435
\(473\) 2.10742i 0.00445543i
\(474\) 27.0984 + 120.627i 0.0571696 + 0.254488i
\(475\) 238.321 412.784i 0.501729 0.869019i
\(476\) −88.4705 200.442i −0.185862 0.421098i
\(477\) −399.884 32.7214i −0.838330 0.0685983i
\(478\) 316.045 + 547.406i 0.661182 + 1.14520i
\(479\) −436.436 + 251.976i −0.911139 + 0.526047i −0.880798 0.473493i \(-0.842993\pi\)
−0.0303418 + 0.999540i \(0.509660\pi\)
\(480\) −16.9541 + 54.3032i −0.0353210 + 0.113132i
\(481\) −532.113 + 921.648i −1.10626 + 1.91611i
\(482\) 101.349 58.5138i 0.210267 0.121398i
\(483\) −327.889 443.497i −0.678860 0.918213i
\(484\) −80.3266 + 139.130i −0.165964 + 0.287458i
\(485\) −186.919 + 107.918i −0.385400 + 0.222511i
\(486\) 307.024 + 154.383i 0.631738 + 0.317660i
\(487\) 146.436 253.634i 0.300690 0.520810i −0.675603 0.737266i \(-0.736116\pi\)
0.976292 + 0.216456i \(0.0694498\pi\)
\(488\) 45.2535i 0.0927326i
\(489\) 147.933 + 160.532i 0.302521 + 0.328287i
\(490\) 226.902 + 49.7588i 0.463065 + 0.101549i
\(491\) −370.452 + 213.881i −0.754485 + 0.435602i −0.827312 0.561743i \(-0.810131\pi\)
0.0728274 + 0.997345i \(0.476798\pi\)
\(492\) 27.7261 25.5500i 0.0563539 0.0519309i
\(493\) 164.778 + 285.404i 0.334235 + 0.578913i
\(494\) −705.721 407.448i −1.42859 0.824794i
\(495\) 386.945 183.090i 0.781707 0.369879i
\(496\) −134.991 −0.272159
\(497\) 233.240 318.864i 0.469296 0.641577i
\(498\) 71.3262 228.455i 0.143225 0.458745i
\(499\) −103.195 + 178.740i −0.206804 + 0.358196i −0.950706 0.310093i \(-0.899640\pi\)
0.743902 + 0.668289i \(0.232973\pi\)
\(500\) 259.880i 0.519760i
\(501\) 439.818 405.299i 0.877881 0.808980i
\(502\) −322.961 −0.643348
\(503\) 415.249i 0.825546i 0.910834 + 0.412773i \(0.135440\pi\)
−0.910834 + 0.412773i \(0.864560\pi\)
\(504\) −33.5803 + 174.998i −0.0666276 + 0.347219i
\(505\) 312.481 0.618774
\(506\) 527.019i 1.04154i
\(507\) 96.4066 308.786i 0.190151 0.609046i
\(508\) −150.569 −0.296396
\(509\) 333.324 + 192.445i 0.654860 + 0.378084i 0.790316 0.612700i \(-0.209916\pi\)
−0.135455 + 0.990783i \(0.543250\pi\)
\(510\) −163.676 + 150.830i −0.320933 + 0.295744i
\(511\) 56.7204 25.0350i 0.110999 0.0489922i
\(512\) 22.6274i 0.0441942i
\(513\) −866.882 350.541i −1.68983 0.683315i
\(514\) 54.2054 93.8865i 0.105458 0.182659i
\(515\) −374.800 + 216.391i −0.727766 + 0.420176i
\(516\) 0.265585 0.850657i 0.000514699 0.00164856i
\(517\) 297.822 + 515.843i 0.576058 + 0.997762i
\(518\) −629.516 68.2149i −1.21528 0.131689i
\(519\) 164.056 + 730.291i 0.316101 + 1.40711i
\(520\) 157.753 0.303371
\(521\) 191.141 + 110.355i 0.366874 + 0.211815i 0.672092 0.740468i \(-0.265396\pi\)
−0.305218 + 0.952282i \(0.598729\pi\)
\(522\) 21.8587 267.132i 0.0418749 0.511747i
\(523\) 389.796 + 675.146i 0.745308 + 1.29091i 0.950051 + 0.312095i \(0.101031\pi\)
−0.204743 + 0.978816i \(0.565636\pi\)
\(524\) 271.055 + 156.493i 0.517280 + 0.298652i
\(525\) 32.6006 + 287.177i 0.0620963 + 0.547003i
\(526\) −250.630 434.104i −0.476483 0.825293i
\(527\) −457.390 264.074i −0.867912 0.501089i
\(528\) −125.211 + 115.383i −0.237141 + 0.218529i
\(529\) 80.3988 + 139.255i 0.151983 + 0.263242i
\(530\) −183.026 + 105.670i −0.345332 + 0.199377i
\(531\) −159.587 337.272i −0.300540 0.635164i
\(532\) 52.2333 482.031i 0.0981829 0.906074i
\(533\) −90.5450 52.2762i −0.169878 0.0980791i
\(534\) −18.0295 19.5650i −0.0337630 0.0366386i
\(535\) 359.500 0.671962
\(536\) 241.335i 0.450253i
\(537\) −589.979 184.198i −1.09866 0.343014i
\(538\) −71.7422 + 124.261i −0.133350 + 0.230969i
\(539\) 513.672 + 468.537i 0.953009 + 0.869270i
\(540\) 179.263 25.1399i 0.331969 0.0465553i
\(541\) 108.437 + 187.818i 0.200437 + 0.347168i 0.948669 0.316269i \(-0.102430\pi\)
−0.748232 + 0.663437i \(0.769097\pi\)
\(542\) −92.8896 + 53.6299i −0.171383 + 0.0989481i
\(543\) 199.233 44.7568i 0.366912 0.0824250i
\(544\) 44.2646 76.6686i 0.0813688 0.140935i
\(545\) −96.0943 + 55.4801i −0.176320 + 0.101798i
\(546\) 490.975 55.7360i 0.899221 0.102081i
\(547\) −330.752 + 572.879i −0.604665 + 1.04731i 0.387440 + 0.921895i \(0.373360\pi\)
−0.992104 + 0.125415i \(0.959974\pi\)
\(548\) 143.229 82.6934i 0.261367 0.150900i
\(549\) 130.160 61.5878i 0.237086 0.112182i
\(550\) −138.085 + 239.170i −0.251063 + 0.434854i
\(551\) 729.289i 1.32357i
\(552\) 66.4169 212.730i 0.120320 0.385381i
\(553\) 164.641 + 120.430i 0.297723 + 0.217776i
\(554\) −328.380 + 189.590i −0.592744 + 0.342221i
\(555\) 140.988 + 627.604i 0.254033 + 1.13082i
\(556\) −100.907 174.776i −0.181487 0.314345i
\(557\) 159.762 + 92.2387i 0.286826 + 0.165599i 0.636510 0.771269i \(-0.280378\pi\)
−0.349684 + 0.936868i \(0.613711\pi\)
\(558\) 183.716 + 388.267i 0.329240 + 0.695819i
\(559\) −2.47119 −0.00442073
\(560\) 37.9004 + 85.8687i 0.0676793 + 0.153337i
\(561\) −649.969 + 146.012i −1.15859 + 0.260272i
\(562\) 346.154 599.557i 0.615933 1.06683i
\(563\) 1043.84i 1.85407i −0.374981 0.927033i \(-0.622351\pi\)
0.374981 0.927033i \(-0.377649\pi\)
\(564\) 55.2070 + 245.752i 0.0978847 + 0.435730i
\(565\) −565.603 −1.00107
\(566\) 739.968i 1.30736i
\(567\) 549.040 141.579i 0.968324 0.249698i
\(568\) 159.630 0.281038
\(569\) 75.8394i 0.133285i 0.997777 + 0.0666427i \(0.0212288\pi\)
−0.997777 + 0.0666427i \(0.978771\pi\)
\(570\) −480.567 + 107.957i −0.843101 + 0.189398i
\(571\) −770.837 −1.34998 −0.674988 0.737829i \(-0.735851\pi\)
−0.674988 + 0.737829i \(0.735851\pi\)
\(572\) 408.900 + 236.078i 0.714860 + 0.412724i
\(573\) −169.741 755.596i −0.296232 1.31867i
\(574\) 6.70160 61.8453i 0.0116753 0.107744i
\(575\) 361.469i 0.628642i
\(576\) −65.0821 + 30.7948i −0.112990 + 0.0534632i
\(577\) 435.383 754.105i 0.754563 1.30694i −0.191028 0.981585i \(-0.561182\pi\)
0.945591 0.325357i \(-0.105484\pi\)
\(578\) −53.9874 + 31.1697i −0.0934039 + 0.0539267i
\(579\) −467.159 + 104.945i −0.806837 + 0.181252i
\(580\) −70.5902 122.266i −0.121707 0.210803i
\(581\) −159.448 361.252i −0.274437 0.621775i
\(582\) −260.756 81.4112i −0.448035 0.139882i
\(583\) −632.544 −1.08498
\(584\) 21.6954 + 12.5258i 0.0371496 + 0.0214483i
\(585\) −214.694 453.737i −0.366999 0.775618i
\(586\) −52.3896 90.7414i −0.0894020 0.154849i
\(587\) 520.453 + 300.484i 0.886633 + 0.511898i 0.872840 0.488007i \(-0.162276\pi\)
0.0137932 + 0.999905i \(0.495609\pi\)
\(588\) 148.296 + 253.859i 0.252204 + 0.431733i
\(589\) −584.381 1012.18i −0.992158 1.71847i
\(590\) −170.209 98.2700i −0.288489 0.166559i
\(591\) 114.280 + 508.713i 0.193367 + 0.860766i
\(592\) −127.926 221.574i −0.216091 0.374281i
\(593\) −288.796 + 166.736i −0.487008 + 0.281174i −0.723332 0.690500i \(-0.757391\pi\)
0.236324 + 0.971674i \(0.424057\pi\)
\(594\) 502.277 + 203.106i 0.845584 + 0.341929i
\(595\) −39.5616 + 365.091i −0.0664901 + 0.613599i
\(596\) −208.362 120.298i −0.349601 0.201842i
\(597\) −86.3821 + 276.678i −0.144694 + 0.463447i
\(598\) −617.990 −1.03343
\(599\) 410.366i 0.685086i 0.939502 + 0.342543i \(0.111288\pi\)
−0.939502 + 0.342543i \(0.888712\pi\)
\(600\) −85.8788 + 79.1386i −0.143131 + 0.131898i
\(601\) 204.315 353.884i 0.339958 0.588825i −0.644466 0.764633i \(-0.722920\pi\)
0.984424 + 0.175808i \(0.0562538\pi\)
\(602\) −0.593707 1.34513i −0.000986225 0.00223443i
\(603\) −694.141 + 328.446i −1.15115 + 0.544686i
\(604\) 73.7142 + 127.677i 0.122043 + 0.211385i
\(605\) 233.194 134.634i 0.385444 0.222536i
\(606\) 268.006 + 290.832i 0.442254 + 0.479920i
\(607\) 114.081 197.594i 0.187942 0.325526i −0.756622 0.653853i \(-0.773152\pi\)
0.944564 + 0.328327i \(0.106485\pi\)
\(608\) 169.663 97.9551i 0.279051 0.161110i
\(609\) −262.896 355.588i −0.431685 0.583888i
\(610\) 37.9244 65.6870i 0.0621712 0.107684i
\(611\) 604.885 349.230i 0.989991 0.571572i
\(612\) −280.760 22.9738i −0.458758 0.0375389i
\(613\) −59.5738 + 103.185i −0.0971840 + 0.168328i −0.910518 0.413469i \(-0.864317\pi\)
0.813334 + 0.581797i \(0.197650\pi\)
\(614\) 225.018i 0.366479i
\(615\) −61.6574 + 13.8510i −0.100256 + 0.0225220i
\(616\) −30.2643 + 279.292i −0.0491304 + 0.453396i
\(617\) 1004.18 579.761i 1.62751 0.939645i 0.642682 0.766133i \(-0.277822\pi\)
0.984832 0.173512i \(-0.0555116\pi\)
\(618\) −522.854 163.241i −0.846042 0.264144i
\(619\) 382.915 + 663.228i 0.618603 + 1.07145i 0.989741 + 0.142873i \(0.0456342\pi\)
−0.371138 + 0.928578i \(0.621032\pi\)
\(620\) 195.944 + 113.128i 0.316038 + 0.182465i
\(621\) −702.256 + 98.4843i −1.13085 + 0.158590i
\(622\) −631.526 −1.01531
\(623\) −43.6413 4.72901i −0.0700503 0.00759071i
\(624\) 135.300 + 146.824i 0.216827 + 0.235294i
\(625\) 45.7547 79.2494i 0.0732075 0.126799i
\(626\) 277.620i 0.443482i
\(627\) −1407.20 439.345i −2.24434 0.700709i
\(628\) 527.183 0.839463
\(629\) 1001.01i 1.59144i
\(630\) 195.399 225.874i 0.310157 0.358530i
\(631\) −562.217 −0.890994 −0.445497 0.895283i \(-0.646973\pi\)
−0.445497 + 0.895283i \(0.646973\pi\)
\(632\) 82.4225i 0.130415i
\(633\) −35.2994 38.3058i −0.0557652 0.0605147i
\(634\) 481.934 0.760148
\(635\) 218.556 + 126.184i 0.344183 + 0.198714i
\(636\) −255.325 79.7155i −0.401455 0.125339i
\(637\) 549.413 602.338i 0.862500 0.945586i
\(638\) 422.555i 0.662312i
\(639\) −217.248 459.135i −0.339982 0.718521i
\(640\) −18.9628 + 32.8445i −0.0296293 + 0.0513195i
\(641\) 608.106 351.090i 0.948684 0.547723i 0.0560121 0.998430i \(-0.482161\pi\)
0.892672 + 0.450707i \(0.148828\pi\)
\(642\) 308.333 + 334.593i 0.480269 + 0.521173i
\(643\) 110.674 + 191.694i 0.172122 + 0.298124i 0.939161 0.343476i \(-0.111604\pi\)
−0.767040 + 0.641600i \(0.778271\pi\)
\(644\) −148.473 336.387i −0.230548 0.522340i
\(645\) −1.09839 + 1.01219i −0.00170294 + 0.00156928i
\(646\) 766.494 1.18652
\(647\) 501.744 + 289.682i 0.775494 + 0.447731i 0.834831 0.550507i \(-0.185565\pi\)
−0.0593372 + 0.998238i \(0.518899\pi\)
\(648\) 177.147 + 145.282i 0.273375 + 0.224201i
\(649\) −294.124 509.437i −0.453195 0.784957i
\(650\) 280.454 + 161.920i 0.431468 + 0.249108i
\(651\) 649.806 + 282.860i 0.998166 + 0.434501i
\(652\) 72.7665 + 126.035i 0.111605 + 0.193306i
\(653\) −926.464 534.894i −1.41878 0.819134i −0.422589 0.906321i \(-0.638879\pi\)
−0.996192 + 0.0871874i \(0.972212\pi\)
\(654\) −134.054 41.8531i −0.204975 0.0639956i
\(655\) −262.297 454.311i −0.400453 0.693605i
\(656\) 21.7680 12.5678i 0.0331830 0.0191582i
\(657\) 6.50104 79.4483i 0.00989504 0.120926i
\(658\) 335.419 + 245.350i 0.509755 + 0.372873i
\(659\) 740.124 + 427.311i 1.12310 + 0.648423i 0.942191 0.335076i \(-0.108762\pi\)
0.180911 + 0.983499i \(0.442095\pi\)
\(660\) 278.444 62.5511i 0.421885 0.0947744i
\(661\) −1180.67 −1.78619 −0.893094 0.449870i \(-0.851470\pi\)
−0.893094 + 0.449870i \(0.851470\pi\)
\(662\) 797.019i 1.20396i
\(663\) 171.216 + 762.162i 0.258244 + 1.14957i
\(664\) 79.7768 138.177i 0.120146 0.208099i
\(665\) −479.782 + 655.911i −0.721477 + 0.986333i
\(666\) −463.202 + 669.499i −0.695498 + 1.00525i
\(667\) 276.534 + 478.971i 0.414594 + 0.718097i
\(668\) 345.305 199.362i 0.516924 0.298446i
\(669\) −263.346 + 843.485i −0.393641 + 1.26081i
\(670\) −202.250 + 350.307i −0.301865 + 0.522846i
\(671\) 196.602 113.508i 0.292999 0.169163i
\(672\) −47.4136 + 108.922i −0.0705559 + 0.162086i
\(673\) 232.243 402.257i 0.345086 0.597707i −0.640283 0.768139i \(-0.721183\pi\)
0.985369 + 0.170432i \(0.0545163\pi\)
\(674\) 743.029 428.988i 1.10242 0.636480i
\(675\) 344.499 + 139.305i 0.510369 + 0.206378i
\(676\) 107.829 186.765i 0.159510 0.276279i
\(677\) 182.958i 0.270248i −0.990829 0.135124i \(-0.956857\pi\)
0.990829 0.135124i \(-0.0431433\pi\)
\(678\) −485.101 526.417i −0.715489 0.776427i
\(679\) −412.330 + 181.992i −0.607260 + 0.268030i
\(680\) −128.503 + 74.1914i −0.188975 + 0.109105i
\(681\) 494.769 455.937i 0.726534 0.669512i
\(682\) 338.594 + 586.462i 0.496472 + 0.859916i
\(683\) 878.043 + 506.938i 1.28557 + 0.742223i 0.977861 0.209258i \(-0.0671048\pi\)
0.307708 + 0.951481i \(0.400438\pi\)
\(684\) −512.647 354.681i −0.749484 0.518540i
\(685\) −277.203 −0.404676
\(686\) 459.865 + 154.346i 0.670356 + 0.224994i
\(687\) −92.5094 + 296.304i −0.134657 + 0.431301i
\(688\) 0.297051 0.514507i 0.000431760 0.000747830i
\(689\) 741.730i 1.07653i
\(690\) −274.684 + 253.125i −0.398093 + 0.366848i
\(691\) 1002.41 1.45066 0.725331 0.688400i \(-0.241687\pi\)
0.725331 + 0.688400i \(0.241687\pi\)
\(692\) 498.995i 0.721090i
\(693\) 844.502 293.056i 1.21862 0.422880i
\(694\) 74.0825 0.106747
\(695\) 338.258i 0.486702i
\(696\) 53.2519 170.564i 0.0765114 0.245063i
\(697\) 98.3422 0.141094
\(698\) 10.6295 + 6.13692i 0.0152285 + 0.00879215i
\(699\) 477.484 440.009i 0.683096 0.629483i
\(700\) −20.7575 + 191.559i −0.0296536 + 0.273656i
\(701\) 77.0590i 0.109927i −0.998488 0.0549636i \(-0.982496\pi\)
0.998488 0.0549636i \(-0.0175043\pi\)
\(702\) 238.164 588.977i 0.339265 0.838999i
\(703\) 1107.59 1918.41i 1.57553 2.72889i
\(704\) −98.3040 + 56.7558i −0.139636 + 0.0806191i
\(705\) 125.816 402.983i 0.178462 0.571608i
\(706\) −84.9077 147.064i −0.120266 0.208306i
\(707\) 648.723 + 70.2962i 0.917572 + 0.0994288i
\(708\) −54.5214 242.700i −0.0770076 0.342796i
\(709\) 906.235 1.27819 0.639093 0.769129i \(-0.279310\pi\)
0.639093 + 0.769129i \(0.279310\pi\)
\(710\) −231.708 133.777i −0.326349 0.188418i
\(711\) 237.068 112.173i 0.333429 0.157768i
\(712\) −8.86850 15.3607i −0.0124558 0.0215740i
\(713\) −767.601 443.175i −1.07658 0.621563i
\(714\) −373.728 + 276.308i −0.523429 + 0.386986i
\(715\) −395.688 685.352i −0.553410 0.958534i
\(716\) −356.840 206.022i −0.498380 0.287740i
\(717\) 986.039 908.650i 1.37523 1.26729i
\(718\) −82.5198 142.928i −0.114930 0.199065i
\(719\) 20.7034 11.9531i 0.0287947 0.0166246i −0.485534 0.874218i \(-0.661375\pi\)
0.514328 + 0.857593i \(0.328041\pi\)
\(720\) 120.276 + 9.84189i 0.167050 + 0.0136693i
\(721\) −826.780 + 364.921i −1.14671 + 0.506131i
\(722\) 1026.83 + 592.838i 1.42220 + 0.821106i
\(723\) −168.231 182.559i −0.232685 0.252503i
\(724\) 136.132 0.188028
\(725\) 289.820i 0.399751i
\(726\) 325.311 + 101.566i 0.448086 + 0.139898i
\(727\) 185.455 321.217i 0.255096 0.441839i −0.709826 0.704377i \(-0.751226\pi\)
0.964921 + 0.262539i \(0.0845597\pi\)
\(728\) 327.502 + 35.4883i 0.449865 + 0.0487477i
\(729\) 176.778 707.241i 0.242494 0.970153i
\(730\) −20.9944 36.3633i −0.0287594 0.0498128i
\(731\) 2.01300 1.16220i 0.00275376 0.00158988i
\(732\) 93.6629 21.0409i 0.127955 0.0287444i
\(733\) 309.948 536.846i 0.422849 0.732396i −0.573368 0.819298i \(-0.694363\pi\)
0.996217 + 0.0869020i \(0.0276967\pi\)
\(734\) −363.257 + 209.726i −0.494900 + 0.285731i
\(735\) −2.51186 492.764i −0.00341750 0.670427i
\(736\) 74.2858 128.667i 0.100932 0.174819i
\(737\) −1048.47 + 605.336i −1.42262 + 0.821352i
\(738\) −65.7733 45.5061i −0.0891237 0.0616614i
\(739\) −304.105 + 526.725i −0.411508 + 0.712754i −0.995055 0.0993262i \(-0.968331\pi\)
0.583546 + 0.812080i \(0.301665\pi\)
\(740\) 428.830i 0.579501i
\(741\) −515.182 + 1650.10i −0.695252 + 2.22686i
\(742\) −403.741 + 178.202i −0.544126 + 0.240164i
\(743\) 723.866 417.924i 0.974248 0.562482i 0.0737195 0.997279i \(-0.476513\pi\)
0.900529 + 0.434797i \(0.143180\pi\)
\(744\) 62.7648 + 279.395i 0.0843613 + 0.375532i
\(745\) 201.630 + 349.234i 0.270645 + 0.468770i
\(746\) −509.624 294.232i −0.683142 0.394412i
\(747\) −506.005 41.4050i −0.677383 0.0554284i
\(748\) −444.112 −0.593732
\(749\) 746.337 + 80.8737i 0.996445 + 0.107976i
\(750\) 537.884 120.833i 0.717179 0.161111i
\(751\) −521.619 + 903.470i −0.694566 + 1.20302i 0.275761 + 0.961226i \(0.411070\pi\)
−0.970327 + 0.241797i \(0.922263\pi\)
\(752\) 167.918i 0.223295i
\(753\) 150.163 + 668.444i 0.199419 + 0.887708i
\(754\) −495.494 −0.657153
\(755\) 247.103i 0.327289i
\(756\) 377.814 11.8641i 0.499754 0.0156932i
\(757\) 441.367 0.583047 0.291524 0.956564i \(-0.405838\pi\)
0.291524 + 0.956564i \(0.405838\pi\)
\(758\) 446.745i 0.589374i
\(759\) −1090.79 + 245.041i −1.43714 + 0.322847i
\(760\) −328.363 −0.432056
\(761\) −257.357 148.585i −0.338182 0.195249i 0.321286 0.946982i \(-0.395885\pi\)
−0.659468 + 0.751733i \(0.729218\pi\)
\(762\) 70.0081 + 311.639i 0.0918741 + 0.408975i
\(763\) −211.977 + 93.5615i −0.277820 + 0.122623i
\(764\) 516.285i 0.675765i
\(765\) 388.280 + 268.636i 0.507555 + 0.351159i
\(766\) 284.805 493.297i 0.371808 0.643990i
\(767\) −597.373 + 344.893i −0.778843 + 0.449665i
\(768\) −46.8328 + 10.5208i −0.0609802 + 0.0136989i
\(769\) −79.6447 137.949i −0.103569 0.179387i 0.809584 0.587005i \(-0.199693\pi\)
−0.913153 + 0.407618i \(0.866360\pi\)
\(770\) 277.989 380.039i 0.361024 0.493558i
\(771\) −219.524 68.5378i −0.284726 0.0888947i
\(772\) −319.201 −0.413473
\(773\) 767.592 + 443.170i 0.993004 + 0.573311i 0.906171 0.422912i \(-0.138992\pi\)
0.0868334 + 0.996223i \(0.472325\pi\)
\(774\) −1.88412 0.154173i −0.00243427 0.000199189i
\(775\) 232.233 + 402.240i 0.299656 + 0.519019i
\(776\) −157.715 91.0566i −0.203241 0.117341i
\(777\) 151.511 + 1334.65i 0.194995 + 1.71770i
\(778\) −257.026 445.182i −0.330367 0.572213i
\(779\) 188.469 + 108.813i 0.241938 + 0.139683i
\(780\) −73.3483 326.507i −0.0940362 0.418599i
\(781\) −400.396 693.505i −0.512670 0.887971i
\(782\) 503.406 290.641i 0.643741 0.371664i
\(783\) −563.057 + 78.9630i −0.719102 + 0.100847i
\(784\) 59.3657 + 186.793i 0.0757215 + 0.238257i
\(785\) −765.224 441.802i −0.974808 0.562805i
\(786\) 197.872 633.775i 0.251745 0.806329i
\(787\) 989.314 1.25707 0.628535 0.777781i \(-0.283655\pi\)
0.628535 + 0.777781i \(0.283655\pi\)
\(788\) 347.594i 0.441109i
\(789\) −781.950 + 720.579i −0.991065 + 0.913281i
\(790\) 69.0737 119.639i 0.0874351 0.151442i
\(791\) −1174.22 127.239i −1.48447 0.160858i
\(792\) 297.031 + 205.505i 0.375039 + 0.259476i
\(793\) −133.101 230.538i −0.167845 0.290717i
\(794\) 79.3992 45.8412i 0.0999991 0.0577345i
\(795\) 303.808 + 329.684i 0.382149 + 0.414696i
\(796\) −96.6164 + 167.345i −0.121377 + 0.210232i
\(797\) −1020.06 + 588.934i −1.27988 + 0.738939i −0.976826 0.214034i \(-0.931340\pi\)
−0.303054 + 0.952973i \(0.598006\pi\)
\(798\) −1021.96 + 116.014i −1.28066 + 0.145381i
\(799\) −328.487 + 568.956i −0.411123 + 0.712085i
\(800\) −67.4242 + 38.9274i −0.0842803 + 0.0486592i
\(801\) −32.1116 + 46.4132i −0.0400893 + 0.0579440i
\(802\) 351.407 608.654i 0.438163 0.758920i
\(803\) 125.673i 0.156504i
\(804\) −499.501 + 112.210i −0.621270 + 0.139565i
\(805\) −66.3931 + 612.704i −0.0824759 + 0.761123i
\(806\) 687.694 397.040i 0.853218 0.492606i
\(807\) 290.545 + 90.7115i 0.360031 + 0.112406i
\(808\) 131.829 + 228.335i 0.163155 + 0.282592i
\(809\) 240.690 + 138.963i 0.297516 + 0.171771i 0.641326 0.767268i \(-0.278384\pi\)
−0.343810 + 0.939039i \(0.611718\pi\)
\(810\) −135.383 359.339i −0.167139 0.443629i
\(811\) −594.387 −0.732906 −0.366453 0.930437i \(-0.619428\pi\)
−0.366453 + 0.930437i \(0.619428\pi\)
\(812\) −119.043 269.709i −0.146605 0.332154i
\(813\) 154.189 + 167.322i 0.189655 + 0.205808i
\(814\) −641.748 + 1111.54i −0.788388 + 1.36553i
\(815\) 243.926i 0.299296i
\(816\) −179.265 55.9686i −0.219687 0.0685890i
\(817\) 5.14378 0.00629594
\(818\) 698.613i 0.854050i
\(819\) −343.641 990.275i −0.419586 1.20913i
\(820\) −42.1294 −0.0513773
\(821\) 135.048i 0.164492i −0.996612 0.0822460i \(-0.973791\pi\)
0.996612 0.0822460i \(-0.0262093\pi\)
\(822\) −237.749 257.998i −0.289232 0.313866i
\(823\) 383.153 0.465557 0.232778 0.972530i \(-0.425218\pi\)
0.232778 + 0.972530i \(0.425218\pi\)
\(824\) −316.240 182.581i −0.383787 0.221579i
\(825\) 559.223 + 174.596i 0.677846 + 0.211631i
\(826\) −331.253 242.303i −0.401033 0.293345i
\(827\) 1194.80i 1.44474i 0.691504 + 0.722372i \(0.256948\pi\)
−0.691504 + 0.722372i \(0.743052\pi\)
\(828\) −471.177 38.5552i −0.569055 0.0465642i
\(829\) 484.580 839.318i 0.584536 1.01245i −0.410397 0.911907i \(-0.634610\pi\)
0.994933 0.100539i \(-0.0320567\pi\)
\(830\) −231.598 + 133.713i −0.279033 + 0.161100i
\(831\) 545.085 + 591.509i 0.655938 + 0.711804i
\(832\) 66.5527 + 115.273i 0.0799912 + 0.138549i
\(833\) −164.263 + 749.046i −0.197195 + 0.899214i
\(834\) −314.823 + 290.114i −0.377486 + 0.347859i
\(835\) −668.297 −0.800356
\(836\) −851.125 491.397i −1.01809 0.587796i
\(837\) 718.191 560.771i 0.858054 0.669977i
\(838\) −187.131 324.120i −0.223306 0.386778i
\(839\) −766.287 442.416i −0.913334 0.527314i −0.0318317 0.999493i \(-0.510134\pi\)
−0.881502 + 0.472180i \(0.843467\pi\)
\(840\) 160.104 118.369i 0.190600 0.140916i
\(841\) −198.780 344.297i −0.236361 0.409390i
\(842\) 100.957 + 58.2877i 0.119902 + 0.0692253i
\(843\) −1401.87 437.681i −1.66296 0.519194i
\(844\) −17.3634 30.0743i −0.0205727 0.0356330i
\(845\) −313.034 + 180.730i −0.370455 + 0.213882i
\(846\) 482.973 228.528i 0.570890 0.270128i
\(847\) 514.408 227.047i 0.607329 0.268061i
\(848\) −154.430 89.1600i −0.182110 0.105142i
\(849\) 1531.54 344.053i 1.80393 0.405245i
\(850\) −304.605 −0.358359
\(851\) 1679.92i 1.97406i
\(852\) −74.2209 330.392i −0.0871137 0.387784i
\(853\) −91.3479 + 158.219i −0.107090 + 0.185486i −0.914590 0.404382i \(-0.867487\pi\)
0.807500 + 0.589867i \(0.200820\pi\)
\(854\) 93.5098 127.838i 0.109496 0.149693i
\(855\) 446.886 + 944.453i 0.522674 + 1.10462i
\(856\) 151.666 + 262.692i 0.177179 + 0.306884i
\(857\) −1043.89 + 602.693i −1.21808 + 0.703259i −0.964507 0.264058i \(-0.914939\pi\)
−0.253573 + 0.967316i \(0.581606\pi\)
\(858\) 298.500 956.081i 0.347902 1.11431i
\(859\) 518.743 898.489i 0.603892 1.04597i −0.388334 0.921519i \(-0.626949\pi\)
0.992226 0.124452i \(-0.0397174\pi\)
\(860\) −0.862359 + 0.497883i −0.00100274 + 0.000578934i
\(861\) −131.119 + 14.8848i −0.152287 + 0.0172878i
\(862\) −334.640 + 579.613i −0.388213 + 0.672405i
\(863\) −908.692 + 524.634i −1.05295 + 0.607919i −0.923473 0.383664i \(-0.874662\pi\)
−0.129473 + 0.991583i \(0.541329\pi\)
\(864\) 93.9976 + 120.385i 0.108793 + 0.139334i
\(865\) 418.179 724.308i 0.483444 0.837350i
\(866\) 199.216i 0.230042i
\(867\) 89.6148 + 97.2473i 0.103362 + 0.112165i
\(868\) 381.338 + 278.939i 0.439330 + 0.321358i
\(869\) 358.082 206.739i 0.412062 0.237904i
\(870\) −220.237 + 202.952i −0.253146 + 0.233278i
\(871\) 709.825 + 1229.45i 0.814955 + 1.41154i
\(872\) −81.0804 46.8118i −0.0929821 0.0536832i
\(873\) −47.2594 + 577.550i −0.0541345 + 0.661570i
\(874\) 1286.35 1.47179
\(875\) 537.005 734.141i 0.613720 0.839018i
\(876\) 15.8378 50.7277i 0.0180796 0.0579083i
\(877\) 532.536 922.379i 0.607224 1.05174i −0.384471 0.923137i \(-0.625616\pi\)
0.991696 0.128606i \(-0.0410504\pi\)
\(878\) 360.843i 0.410983i
\(879\) −163.452 + 150.624i −0.185952 + 0.171358i
\(880\) 190.256 0.216200
\(881\) 963.331i 1.09345i 0.837312 + 0.546726i \(0.184126\pi\)
−0.837312 + 0.546726i \(0.815874\pi\)
\(882\) 456.470 424.967i 0.517540 0.481822i
\(883\) −1212.68 −1.37336 −0.686681 0.726959i \(-0.740933\pi\)
−0.686681 + 0.726959i \(0.740933\pi\)
\(884\) 520.771i 0.589108i
\(885\) −124.254 + 397.979i −0.140399 + 0.449693i
\(886\) 659.561 0.744426
\(887\) 404.747 + 233.681i 0.456310 + 0.263450i 0.710491 0.703706i \(-0.248473\pi\)
−0.254182 + 0.967157i \(0.581806\pi\)
\(888\) −399.121 + 367.796i −0.449460 + 0.414184i
\(889\) 425.346 + 311.129i 0.478454 + 0.349977i
\(890\) 29.7288i 0.0334031i
\(891\) 186.838 1134.02i 0.209695 1.27275i
\(892\) −294.546 + 510.169i −0.330209 + 0.571939i
\(893\) −1259.07 + 726.923i −1.40993 + 0.814024i
\(894\) −152.106 + 487.189i −0.170141 + 0.544954i
\(895\) 345.310 + 598.095i 0.385822 + 0.668263i
\(896\) −46.7563 + 63.9207i −0.0521833 + 0.0713400i
\(897\) 287.338 + 1279.08i 0.320333 + 1.42595i
\(898\) −541.963 −0.603522
\(899\) −615.449 355.330i −0.684593 0.395250i
\(900\) 203.726 + 140.951i 0.226362 + 0.156612i
\(901\) −348.836 604.202i −0.387166 0.670591i
\(902\) −109.200 63.0469i −0.121065 0.0698968i
\(903\) −2.50801 + 1.85425i −0.00277742 + 0.00205343i
\(904\) −238.616 413.295i −0.263956 0.457185i
\(905\) −197.601 114.085i −0.218344 0.126061i
\(906\) 229.984 211.933i 0.253845 0.233922i
\(907\) 525.571 + 910.316i 0.579461 + 1.00366i 0.995541 + 0.0943280i \(0.0300702\pi\)
−0.416080 + 0.909328i \(0.636596\pi\)
\(908\) 388.448 224.271i 0.427806 0.246994i
\(909\) 477.334 689.926i 0.525120 0.758994i
\(910\) −445.639 325.973i −0.489714 0.358213i
\(911\) 1182.79 + 682.886i 1.29835 + 0.749601i 0.980118 0.198413i \(-0.0635788\pi\)
0.318228 + 0.948014i \(0.396912\pi\)
\(912\) −281.627 305.614i −0.308802 0.335103i
\(913\) −800.409 −0.876681
\(914\) 683.764i 0.748101i
\(915\) −153.588 47.9520i −0.167856 0.0524066i
\(916\) −103.470 + 179.215i −0.112958 + 0.195649i
\(917\) −442.337 1002.18i −0.482374 1.09289i
\(918\) 82.9914 + 591.781i 0.0904045 + 0.644642i
\(919\) 87.7536 + 151.994i 0.0954881 + 0.165390i 0.909812 0.415020i \(-0.136225\pi\)
−0.814324 + 0.580410i \(0.802892\pi\)
\(920\) −215.657 + 124.510i −0.234410 + 0.135336i
\(921\) 465.729 104.624i 0.505678 0.113598i
\(922\) −319.793 + 553.898i −0.346847 + 0.600757i
\(923\) −813.214 + 469.509i −0.881055 + 0.508677i
\(924\) 592.133 67.2195i 0.640837 0.0727484i
\(925\) −440.158 + 762.377i −0.475847 + 0.824191i
\(926\) −384.979 + 222.268i −0.415744 + 0.240030i
\(927\) −94.7618 + 1158.07i −0.102224 + 1.24927i
\(928\) 59.5611 103.163i 0.0641822 0.111167i
\(929\) 1052.24i 1.13266i −0.824179 0.566329i \(-0.808363\pi\)
0.824179 0.566329i \(-0.191637\pi\)
\(930\) 143.040 458.152i 0.153807 0.492637i
\(931\) −1143.60 + 1253.77i −1.22836 + 1.34669i
\(932\) 374.877 216.435i 0.402229 0.232227i
\(933\) 293.632 + 1307.09i 0.314718 + 1.40096i
\(934\) −211.292 365.969i −0.226223 0.391829i
\(935\) 644.644 + 372.185i 0.689458 + 0.398059i
\(936\) 240.978 348.303i 0.257455 0.372118i
\(937\) 1548.61 1.65274 0.826368 0.563131i \(-0.190403\pi\)
0.826368 + 0.563131i \(0.190403\pi\)
\(938\) −498.685 + 681.753i −0.531647 + 0.726816i
\(939\) 574.600 129.081i 0.611927 0.137467i
\(940\) 140.722 243.738i 0.149705 0.259296i
\(941\) 572.102i 0.607972i 0.952677 + 0.303986i \(0.0983176\pi\)
−0.952677 + 0.303986i \(0.901682\pi\)
\(942\) −245.117 1091.13i −0.260209 1.15831i
\(943\) 165.040 0.175016
\(944\) 165.832i 0.175670i
\(945\) −558.353 299.403i −0.590849 0.316829i
\(946\) −2.98034 −0.00315047
\(947\) 959.484i 1.01318i −0.862186 0.506591i \(-0.830905\pi\)
0.862186 0.506591i \(-0.169095\pi\)
\(948\) 170.593 38.3229i 0.179950 0.0404250i
\(949\) −147.366 −0.155285
\(950\) −583.765 337.037i −0.614490 0.354776i
\(951\) −224.078 997.477i −0.235624 1.04887i
\(952\) −283.468 + 125.116i −0.297761 + 0.131425i
\(953\) 1308.52i 1.37305i −0.727104 0.686527i \(-0.759134\pi\)
0.727104 0.686527i \(-0.240866\pi\)
\(954\) −46.2750 + 565.521i −0.0485063 + 0.592789i
\(955\) −432.669 + 749.405i −0.453057 + 0.784717i
\(956\) 774.149 446.955i 0.809779 0.467526i
\(957\) −874.578 + 196.470i −0.913875 + 0.205298i
\(958\) 356.348 + 617.213i 0.371971 + 0.644273i
\(959\) −575.485 62.3600i −0.600089 0.0650261i
\(960\) 76.7963 + 23.9767i 0.0799962 + 0.0249757i
\(961\) 177.906 0.185126
\(962\) 1303.41 + 752.522i 1.35489 + 0.782247i
\(963\) 549.159 793.739i 0.570259 0.824236i
\(964\) −82.7511 143.329i −0.0858413 0.148682i
\(965\) 463.331 + 267.504i 0.480136 + 0.277207i
\(966\) −627.199 + 463.706i −0.649274 + 0.480027i
\(967\) 85.8474 + 148.692i 0.0887770 + 0.153766i 0.906994 0.421143i \(-0.138371\pi\)
−0.818217 + 0.574909i \(0.805037\pi\)
\(968\) 196.759 + 113.599i 0.203264 + 0.117354i
\(969\) −356.386 1586.44i −0.367788 1.63719i
\(970\) 152.619 + 264.344i 0.157339 + 0.272519i
\(971\) 803.642 463.983i 0.827644 0.477840i −0.0254013 0.999677i \(-0.508086\pi\)
0.853045 + 0.521837i \(0.174753\pi\)
\(972\) 218.330 434.198i 0.224619 0.446706i
\(973\) −76.0950 + 702.238i −0.0782066 + 0.721724i
\(974\) −358.693 207.092i −0.368268 0.212620i
\(975\) 204.733 655.752i 0.209983 0.672566i
\(976\) 63.9981 0.0655718
\(977\) 1422.61i 1.45610i 0.685523 + 0.728051i \(0.259574\pi\)
−0.685523 + 0.728051i \(0.740426\pi\)
\(978\) 227.027 209.209i 0.232134 0.213915i
\(979\) −44.4893 + 77.0577i −0.0454436 + 0.0787107i
\(980\) 70.3696 320.888i 0.0718057 0.327437i
\(981\) −24.2958 + 296.916i −0.0247664 + 0.302667i
\(982\) 302.473 + 523.898i 0.308017 + 0.533501i
\(983\) −244.614 + 141.228i −0.248844 + 0.143670i −0.619235 0.785206i \(-0.712557\pi\)
0.370391 + 0.928876i \(0.379224\pi\)
\(984\) −36.1332 39.2106i −0.0367207 0.0398482i
\(985\) 291.299 504.545i 0.295735 0.512228i
\(986\) 403.622 233.031i 0.409353 0.236340i
\(987\) 351.855 808.307i 0.356490 0.818953i
\(988\) −576.219 + 998.041i −0.583218 + 1.01016i
\(989\) 3.37825 1.95043i 0.00341583 0.00197213i
\(990\) −258.929 547.223i −0.261544 0.552750i
\(991\) 587.805 1018.11i 0.593143 1.02735i −0.400663 0.916226i \(-0.631220\pi\)
0.993806 0.111129i \(-0.0354465\pi\)
\(992\) 190.906i 0.192445i
\(993\) 1649.62 370.579i 1.66125 0.373192i
\(994\) −450.941 329.852i −0.453663 0.331843i
\(995\) 280.484 161.938i 0.281894 0.162751i
\(996\) −323.084 100.871i −0.324381 0.101276i
\(997\) 357.930 + 619.953i 0.359007 + 0.621818i 0.987795 0.155758i \(-0.0497821\pi\)
−0.628788 + 0.777577i \(0.716449\pi\)
\(998\) 252.776 + 145.940i 0.253283 + 0.146233i
\(999\) 1601.06 + 647.418i 1.60266 + 0.648066i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 126.3.r.a.11.1 yes 32
3.2 odd 2 378.3.r.a.305.10 32
7.2 even 3 126.3.i.a.65.6 32
9.4 even 3 378.3.i.a.179.10 32
9.5 odd 6 126.3.i.a.95.6 yes 32
21.2 odd 6 378.3.i.a.359.15 32
63.23 odd 6 inner 126.3.r.a.23.9 yes 32
63.58 even 3 378.3.r.a.233.2 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.3.i.a.65.6 32 7.2 even 3
126.3.i.a.95.6 yes 32 9.5 odd 6
126.3.r.a.11.1 yes 32 1.1 even 1 trivial
126.3.r.a.23.9 yes 32 63.23 odd 6 inner
378.3.i.a.179.10 32 9.4 even 3
378.3.i.a.359.15 32 21.2 odd 6
378.3.r.a.233.2 32 63.58 even 3
378.3.r.a.305.10 32 3.2 odd 2