L(s) = 1 | + (0.866 − 0.5i)3-s + 1.88·5-s + (−3.80 − 2.19i)7-s + (0.499 − 0.866i)9-s + (0.0662 + 0.114i)11-s + (−3.59 + 0.274i)13-s + (1.63 − 0.942i)15-s + (1.14 − 1.98i)17-s + (2.18 − 3.79i)19-s − 4.39·21-s + (−1.97 − 3.42i)23-s − 1.44·25-s − 0.999i·27-s + (2.20 − 1.27i)29-s + 1.06i·31-s + ⋯ |
L(s) = 1 | + (0.499 − 0.288i)3-s + 0.843·5-s + (−1.43 − 0.831i)7-s + (0.166 − 0.288i)9-s + (0.0199 + 0.0346i)11-s + (−0.997 + 0.0760i)13-s + (0.421 − 0.243i)15-s + (0.278 − 0.482i)17-s + (0.502 − 0.870i)19-s − 0.959·21-s + (−0.411 − 0.713i)23-s − 0.288·25-s − 0.192i·27-s + (0.409 − 0.236i)29-s + 0.191i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1248 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.476 + 0.879i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1248 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.476 + 0.879i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.405581810\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.405581810\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.866 + 0.5i)T \) |
| 13 | \( 1 + (3.59 - 0.274i)T \) |
good | 5 | \( 1 - 1.88T + 5T^{2} \) |
| 7 | \( 1 + (3.80 + 2.19i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-0.0662 - 0.114i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-1.14 + 1.98i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.18 + 3.79i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (1.97 + 3.42i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.20 + 1.27i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 1.06iT - 31T^{2} \) |
| 37 | \( 1 + (5.28 + 9.15i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-7.14 + 4.12i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (8.32 + 4.80i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 10.1iT - 47T^{2} \) |
| 53 | \( 1 + 8.28iT - 53T^{2} \) |
| 59 | \( 1 + (1.65 - 2.86i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-6.40 - 3.69i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (0.540 + 0.936i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (6.45 + 3.72i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 6.14iT - 73T^{2} \) |
| 79 | \( 1 - 15.9T + 79T^{2} \) |
| 83 | \( 1 + 0.144T + 83T^{2} \) |
| 89 | \( 1 + (14.2 - 8.20i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-6.11 - 3.53i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.598363078295095581180229534383, −8.839865730714462066125855258824, −7.55948732408693384130427972946, −7.00582967912905934989688239161, −6.28682670815400400286891259226, −5.26582523220374170122020726509, −4.07794916424204595856152411673, −3.04671758124748820435962646183, −2.20265783259929297518024309619, −0.51762848052672618243513333388,
1.83630959373039190520584658374, 2.87639179263667039938538269002, 3.59811438518765936031948687669, 5.01300855433414443380328423212, 5.85341299965750960549310814899, 6.48490769606908815037346683176, 7.57400521747662539585538972227, 8.505192239104365498745071569640, 9.378756705011414415085269986195, 9.961687404130500605579015408221