| L(s)  = 1  |         + 5-s             + 5·11-s     + 3·13-s         + 3·17-s     + 4·19-s         − 7·23-s     + 25-s         − 8·29-s     + 3·31-s                     − 3·41-s     + 43-s             − 7·49-s         − 9·53-s     + 5·55-s         − 8·59-s             + 3·65-s     − 11·67-s         + 8·71-s     − 4·73-s             + 8·79-s         − 9·83-s     + 3·85-s         + 4·89-s             + 4·95-s     + 13·97-s         + 101-s     + 103-s  + ⋯ | 
 
| L(s)  = 1  |         + 0.447·5-s             + 1.50·11-s     + 0.832·13-s         + 0.727·17-s     + 0.917·19-s         − 1.45·23-s     + 1/5·25-s         − 1.48·29-s     + 0.538·31-s                     − 0.468·41-s     + 0.152·43-s             − 49-s         − 1.23·53-s     + 0.674·55-s         − 1.04·59-s             + 0.372·65-s     − 1.34·67-s         + 0.949·71-s     − 0.468·73-s             + 0.900·79-s         − 0.987·83-s     + 0.325·85-s         + 0.423·89-s             + 0.410·95-s     + 1.31·97-s         + 0.0995·101-s     + 0.0985·103-s  + ⋯ | 
 
\[\begin{aligned}\Lambda(s)=\mathstrut & 123840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 123840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      |  \(L(1)\)  | 
            \(=\) | 
             \(0\)  | 
    
    
      |  \(L(\frac12)\)  | 
            \(=\) | 
      
       \(0\)  | 
    
    
        
      |  \(L(\frac{3}{2})\)  | 
             | 
       not available  | 
          
    
      |  \(L(1)\)  | 
             | 
       not available  | 
          
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
 | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 2 |  \( 1 \)  |    | 
 | 3 |  \( 1 \)  |    | 
 | 5 |  \( 1 - T \)  |    | 
 | 43 |  \( 1 - T \)  |    | 
| good | 7 |  \( 1 + p T^{2} \)  |  1.7.a  | 
 | 11 |  \( 1 - 5 T + p T^{2} \)  |  1.11.af  | 
 | 13 |  \( 1 - 3 T + p T^{2} \)  |  1.13.ad  | 
 | 17 |  \( 1 - 3 T + p T^{2} \)  |  1.17.ad  | 
 | 19 |  \( 1 - 4 T + p T^{2} \)  |  1.19.ae  | 
 | 23 |  \( 1 + 7 T + p T^{2} \)  |  1.23.h  | 
 | 29 |  \( 1 + 8 T + p T^{2} \)  |  1.29.i  | 
 | 31 |  \( 1 - 3 T + p T^{2} \)  |  1.31.ad  | 
 | 37 |  \( 1 + p T^{2} \)  |  1.37.a  | 
 | 41 |  \( 1 + 3 T + p T^{2} \)  |  1.41.d  | 
 | 47 |  \( 1 + p T^{2} \)  |  1.47.a  | 
 | 53 |  \( 1 + 9 T + p T^{2} \)  |  1.53.j  | 
 | 59 |  \( 1 + 8 T + p T^{2} \)  |  1.59.i  | 
 | 61 |  \( 1 + p T^{2} \)  |  1.61.a  | 
 | 67 |  \( 1 + 11 T + p T^{2} \)  |  1.67.l  | 
 | 71 |  \( 1 - 8 T + p T^{2} \)  |  1.71.ai  | 
 | 73 |  \( 1 + 4 T + p T^{2} \)  |  1.73.e  | 
 | 79 |  \( 1 - 8 T + p T^{2} \)  |  1.79.ai  | 
 | 83 |  \( 1 + 9 T + p T^{2} \)  |  1.83.j  | 
 | 89 |  \( 1 - 4 T + p T^{2} \)  |  1.89.ae  | 
 | 97 |  \( 1 - 13 T + p T^{2} \)  |  1.97.an  | 
|  show more |  | 
| show less |  | 
 
     \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−13.89765135305062, −13.31621667877346, −12.89901385798581, −12.14581906387692, −11.89971682534202, −11.47975030509923, −10.85609938550077, −10.42033097906636, −9.612069174866515, −9.528671761692463, −9.071908126213887, −8.277134106667691, −7.975277341127286, −7.332369158324665, −6.742457581626438, −6.161987250710188, −5.918382731186037, −5.314642225012623, −4.580830994471992, −4.017134977669014, −3.462457866806530, −3.090881089265647, −2.042241983153534, −1.529872409818570, −1.088328204035911, 0, 
1.088328204035911, 1.529872409818570, 2.042241983153534, 3.090881089265647, 3.462457866806530, 4.017134977669014, 4.580830994471992, 5.314642225012623, 5.918382731186037, 6.161987250710188, 6.742457581626438, 7.332369158324665, 7.975277341127286, 8.277134106667691, 9.071908126213887, 9.528671761692463, 9.612069174866515, 10.42033097906636, 10.85609938550077, 11.47975030509923, 11.89971682534202, 12.14581906387692, 12.89901385798581, 13.31621667877346, 13.89765135305062