Properties

Label 2-123840-1.1-c1-0-141
Degree $2$
Conductor $123840$
Sign $-1$
Analytic cond. $988.867$
Root an. cond. $31.4462$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 5·11-s + 3·13-s + 3·17-s + 4·19-s − 7·23-s + 25-s − 8·29-s + 3·31-s − 3·41-s + 43-s − 7·49-s − 9·53-s + 5·55-s − 8·59-s + 3·65-s − 11·67-s + 8·71-s − 4·73-s + 8·79-s − 9·83-s + 3·85-s + 4·89-s + 4·95-s + 13·97-s + 101-s + 103-s + ⋯
L(s)  = 1  + 0.447·5-s + 1.50·11-s + 0.832·13-s + 0.727·17-s + 0.917·19-s − 1.45·23-s + 1/5·25-s − 1.48·29-s + 0.538·31-s − 0.468·41-s + 0.152·43-s − 49-s − 1.23·53-s + 0.674·55-s − 1.04·59-s + 0.372·65-s − 1.34·67-s + 0.949·71-s − 0.468·73-s + 0.900·79-s − 0.987·83-s + 0.325·85-s + 0.423·89-s + 0.410·95-s + 1.31·97-s + 0.0995·101-s + 0.0985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 123840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 123840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(123840\)    =    \(2^{6} \cdot 3^{2} \cdot 5 \cdot 43\)
Sign: $-1$
Analytic conductor: \(988.867\)
Root analytic conductor: \(31.4462\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 123840,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
43 \( 1 - T \)
good7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 - 5 T + p T^{2} \) 1.11.af
13 \( 1 - 3 T + p T^{2} \) 1.13.ad
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 7 T + p T^{2} \) 1.23.h
29 \( 1 + 8 T + p T^{2} \) 1.29.i
31 \( 1 - 3 T + p T^{2} \) 1.31.ad
37 \( 1 + p T^{2} \) 1.37.a
41 \( 1 + 3 T + p T^{2} \) 1.41.d
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 + 11 T + p T^{2} \) 1.67.l
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 9 T + p T^{2} \) 1.83.j
89 \( 1 - 4 T + p T^{2} \) 1.89.ae
97 \( 1 - 13 T + p T^{2} \) 1.97.an
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.89765135305062, −13.31621667877346, −12.89901385798581, −12.14581906387692, −11.89971682534202, −11.47975030509923, −10.85609938550077, −10.42033097906636, −9.612069174866515, −9.528671761692463, −9.071908126213887, −8.277134106667691, −7.975277341127286, −7.332369158324665, −6.742457581626438, −6.161987250710188, −5.918382731186037, −5.314642225012623, −4.580830994471992, −4.017134977669014, −3.462457866806530, −3.090881089265647, −2.042241983153534, −1.529872409818570, −1.088328204035911, 0, 1.088328204035911, 1.529872409818570, 2.042241983153534, 3.090881089265647, 3.462457866806530, 4.017134977669014, 4.580830994471992, 5.314642225012623, 5.918382731186037, 6.161987250710188, 6.742457581626438, 7.332369158324665, 7.975277341127286, 8.277134106667691, 9.071908126213887, 9.528671761692463, 9.612069174866515, 10.42033097906636, 10.85609938550077, 11.47975030509923, 11.89971682534202, 12.14581906387692, 12.89901385798581, 13.31621667877346, 13.89765135305062

Graph of the $Z$-function along the critical line