| L(s) = 1 | + (0.707 + 0.707i)2-s + (−0.707 + 0.707i)3-s + 1.00i·4-s − 3.88·5-s − 1.00·6-s + (−0.687 + 2.55i)7-s + (−0.707 + 0.707i)8-s − 1.00i·9-s + (−2.74 − 2.74i)10-s + (−2.40 − 2.40i)11-s + (−0.707 − 0.707i)12-s − 1.76·13-s + (−2.29 + 1.32i)14-s + (2.74 − 2.74i)15-s − 1.00·16-s + (2.16 − 2.16i)17-s + ⋯ |
| L(s) = 1 | + (0.499 + 0.499i)2-s + (−0.408 + 0.408i)3-s + 0.500i·4-s − 1.73·5-s − 0.408·6-s + (−0.259 + 0.965i)7-s + (−0.250 + 0.250i)8-s − 0.333i·9-s + (−0.867 − 0.867i)10-s + (−0.724 − 0.724i)11-s + (−0.204 − 0.204i)12-s − 0.490·13-s + (−0.612 + 0.352i)14-s + (0.708 − 0.708i)15-s − 0.250·16-s + (0.525 − 0.525i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1218 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.774 + 0.632i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1218 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.774 + 0.632i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.4875855919\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.4875855919\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.707 - 0.707i)T \) |
| 3 | \( 1 + (0.707 - 0.707i)T \) |
| 7 | \( 1 + (0.687 - 2.55i)T \) |
| 29 | \( 1 + (-3.09 + 4.40i)T \) |
| good | 5 | \( 1 + 3.88T + 5T^{2} \) |
| 11 | \( 1 + (2.40 + 2.40i)T + 11iT^{2} \) |
| 13 | \( 1 + 1.76T + 13T^{2} \) |
| 17 | \( 1 + (-2.16 + 2.16i)T - 17iT^{2} \) |
| 19 | \( 1 + (1.23 - 1.23i)T - 19iT^{2} \) |
| 23 | \( 1 - 7.16T + 23T^{2} \) |
| 31 | \( 1 + (-0.785 + 0.785i)T - 31iT^{2} \) |
| 37 | \( 1 + (6.21 - 6.21i)T - 37iT^{2} \) |
| 41 | \( 1 + (0.510 + 0.510i)T + 41iT^{2} \) |
| 43 | \( 1 + (1.06 + 1.06i)T + 43iT^{2} \) |
| 47 | \( 1 + (-1.53 - 1.53i)T + 47iT^{2} \) |
| 53 | \( 1 + 4.74T + 53T^{2} \) |
| 59 | \( 1 + 9.85iT - 59T^{2} \) |
| 61 | \( 1 + (-3.88 + 3.88i)T - 61iT^{2} \) |
| 67 | \( 1 + 1.35iT - 67T^{2} \) |
| 71 | \( 1 + 11.6iT - 71T^{2} \) |
| 73 | \( 1 + (11.0 + 11.0i)T + 73iT^{2} \) |
| 79 | \( 1 + (-7.92 - 7.92i)T + 79iT^{2} \) |
| 83 | \( 1 - 4.45iT - 83T^{2} \) |
| 89 | \( 1 + (-5.59 + 5.59i)T - 89iT^{2} \) |
| 97 | \( 1 + (5.97 + 5.97i)T + 97iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.521408874858469151836256924017, −8.536491734764160825801890476121, −8.031688602795891167571873904921, −7.14888750705839169612013644274, −6.25995617824477051700322557277, −5.17669325522852129820811291618, −4.71177583749615123238740606369, −3.47431814045484292034500105737, −2.90954962421789700579151144821, −0.22503612170936070990601899936,
1.06208466630131574689041180012, 2.80100454690039321353905023290, 3.75206236365263428688395471509, 4.56605792522781272343623690185, 5.26934512799309751935708053389, 6.81533827179145488693677914431, 7.21910702818280365195252377229, 7.939901177355719389960004030240, 8.961689881679076127877664200095, 10.33704723062523212358343225993