L(s) = 1 | + (0.707 − 0.707i)2-s + (−0.707 − 0.707i)3-s − 1.00i·4-s − 3.88·5-s − 1.00·6-s + (−0.687 − 2.55i)7-s + (−0.707 − 0.707i)8-s + 1.00i·9-s + (−2.74 + 2.74i)10-s + (−2.40 + 2.40i)11-s + (−0.707 + 0.707i)12-s − 1.76·13-s + (−2.29 − 1.32i)14-s + (2.74 + 2.74i)15-s − 1.00·16-s + (2.16 + 2.16i)17-s + ⋯ |
L(s) = 1 | + (0.499 − 0.499i)2-s + (−0.408 − 0.408i)3-s − 0.500i·4-s − 1.73·5-s − 0.408·6-s + (−0.259 − 0.965i)7-s + (−0.250 − 0.250i)8-s + 0.333i·9-s + (−0.867 + 0.867i)10-s + (−0.724 + 0.724i)11-s + (−0.204 + 0.204i)12-s − 0.490·13-s + (−0.612 − 0.352i)14-s + (0.708 + 0.708i)15-s − 0.250·16-s + (0.525 + 0.525i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1218 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.774 - 0.632i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1218 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.774 - 0.632i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.4875855919\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4875855919\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.707 + 0.707i)T \) |
| 3 | \( 1 + (0.707 + 0.707i)T \) |
| 7 | \( 1 + (0.687 + 2.55i)T \) |
| 29 | \( 1 + (-3.09 - 4.40i)T \) |
good | 5 | \( 1 + 3.88T + 5T^{2} \) |
| 11 | \( 1 + (2.40 - 2.40i)T - 11iT^{2} \) |
| 13 | \( 1 + 1.76T + 13T^{2} \) |
| 17 | \( 1 + (-2.16 - 2.16i)T + 17iT^{2} \) |
| 19 | \( 1 + (1.23 + 1.23i)T + 19iT^{2} \) |
| 23 | \( 1 - 7.16T + 23T^{2} \) |
| 31 | \( 1 + (-0.785 - 0.785i)T + 31iT^{2} \) |
| 37 | \( 1 + (6.21 + 6.21i)T + 37iT^{2} \) |
| 41 | \( 1 + (0.510 - 0.510i)T - 41iT^{2} \) |
| 43 | \( 1 + (1.06 - 1.06i)T - 43iT^{2} \) |
| 47 | \( 1 + (-1.53 + 1.53i)T - 47iT^{2} \) |
| 53 | \( 1 + 4.74T + 53T^{2} \) |
| 59 | \( 1 - 9.85iT - 59T^{2} \) |
| 61 | \( 1 + (-3.88 - 3.88i)T + 61iT^{2} \) |
| 67 | \( 1 - 1.35iT - 67T^{2} \) |
| 71 | \( 1 - 11.6iT - 71T^{2} \) |
| 73 | \( 1 + (11.0 - 11.0i)T - 73iT^{2} \) |
| 79 | \( 1 + (-7.92 + 7.92i)T - 79iT^{2} \) |
| 83 | \( 1 + 4.45iT - 83T^{2} \) |
| 89 | \( 1 + (-5.59 - 5.59i)T + 89iT^{2} \) |
| 97 | \( 1 + (5.97 - 5.97i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.33704723062523212358343225993, −8.961689881679076127877664200095, −7.939901177355719389960004030240, −7.21910702818280365195252377229, −6.81533827179145488693677914431, −5.26934512799309751935708053389, −4.56605792522781272343623690185, −3.75206236365263428688395471509, −2.80100454690039321353905023290, −1.06208466630131574689041180012,
0.22503612170936070990601899936, 2.90954962421789700579151144821, 3.47431814045484292034500105737, 4.71177583749615123238740606369, 5.17669325522852129820811291618, 6.25995617824477051700322557277, 7.14888750705839169612013644274, 8.031688602795891167571873904921, 8.536491734764160825801890476121, 9.521408874858469151836256924017