Properties

Label 2-121275-1.1-c1-0-109
Degree $2$
Conductor $121275$
Sign $-1$
Analytic cond. $968.385$
Root an. cond. $31.1188$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 2·4-s + 11-s − 3·13-s − 4·16-s + 19-s − 2·22-s + 2·23-s + 6·26-s + 8·29-s − 5·31-s + 8·32-s + 3·37-s − 2·38-s − 8·41-s + 11·43-s + 2·44-s − 4·46-s − 4·47-s − 6·52-s + 6·53-s − 16·58-s + 6·59-s − 6·61-s + 10·62-s − 8·64-s − 13·67-s + ⋯
L(s)  = 1  − 1.41·2-s + 4-s + 0.301·11-s − 0.832·13-s − 16-s + 0.229·19-s − 0.426·22-s + 0.417·23-s + 1.17·26-s + 1.48·29-s − 0.898·31-s + 1.41·32-s + 0.493·37-s − 0.324·38-s − 1.24·41-s + 1.67·43-s + 0.301·44-s − 0.589·46-s − 0.583·47-s − 0.832·52-s + 0.824·53-s − 2.10·58-s + 0.781·59-s − 0.768·61-s + 1.27·62-s − 64-s − 1.58·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 121275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 121275 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(121275\)    =    \(3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(968.385\)
Root analytic conductor: \(31.1188\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 121275,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 \)
7 \( 1 \)
11 \( 1 - T \)
good2 \( 1 + p T + p T^{2} \) 1.2.c
13 \( 1 + 3 T + p T^{2} \) 1.13.d
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 - 8 T + p T^{2} \) 1.29.ai
31 \( 1 + 5 T + p T^{2} \) 1.31.f
37 \( 1 - 3 T + p T^{2} \) 1.37.ad
41 \( 1 + 8 T + p T^{2} \) 1.41.i
43 \( 1 - 11 T + p T^{2} \) 1.43.al
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 + 13 T + p T^{2} \) 1.67.n
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 15 T + p T^{2} \) 1.73.p
79 \( 1 - T + p T^{2} \) 1.79.ab
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 8 T + p T^{2} \) 1.89.ai
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.76388827867476, −13.34318141426531, −12.77313513251621, −12.15024576775584, −11.75500341672442, −11.31775027033270, −10.64857230242041, −10.26939375308967, −9.953598302231016, −9.305192907886635, −8.896034805129284, −8.606724732087883, −7.879801987995405, −7.432116208937228, −7.119375536247939, −6.508470872534720, −5.920629817181529, −5.241060091321013, −4.563275527292437, −4.249857163919452, −3.245508984593413, −2.739842627551642, −2.046096799496780, −1.404590227565743, −0.7636746506542952, 0, 0.7636746506542952, 1.404590227565743, 2.046096799496780, 2.739842627551642, 3.245508984593413, 4.249857163919452, 4.563275527292437, 5.241060091321013, 5.920629817181529, 6.508470872534720, 7.119375536247939, 7.432116208937228, 7.879801987995405, 8.606724732087883, 8.896034805129284, 9.305192907886635, 9.953598302231016, 10.26939375308967, 10.64857230242041, 11.31775027033270, 11.75500341672442, 12.15024576775584, 12.77313513251621, 13.34318141426531, 13.76388827867476

Graph of the $Z$-function along the critical line