Properties

Label 2-1200-5.4-c3-0-37
Degree $2$
Conductor $1200$
Sign $0.447 + 0.894i$
Analytic cond. $70.8022$
Root an. cond. $8.41440$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3i·3-s − 5i·7-s − 9·9-s − 14·11-s i·13-s + 46i·17-s + 19·19-s + 15·21-s − 46i·23-s − 27i·27-s − 14·29-s − 133·31-s − 42i·33-s + 258i·37-s + 3·39-s + ⋯
L(s)  = 1  + 0.577i·3-s − 0.269i·7-s − 0.333·9-s − 0.383·11-s − 0.0213i·13-s + 0.656i·17-s + 0.229·19-s + 0.155·21-s − 0.417i·23-s − 0.192i·27-s − 0.0896·29-s − 0.770·31-s − 0.221i·33-s + 1.14i·37-s + 0.0123·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1200 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1200\)    =    \(2^{4} \cdot 3 \cdot 5^{2}\)
Sign: $0.447 + 0.894i$
Analytic conductor: \(70.8022\)
Root analytic conductor: \(8.41440\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{1200} (49, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1200,\ (\ :3/2),\ 0.447 + 0.894i)\)

Particular Values

\(L(2)\) \(\approx\) \(1.245673852\)
\(L(\frac12)\) \(\approx\) \(1.245673852\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - 3iT \)
5 \( 1 \)
good7 \( 1 + 5iT - 343T^{2} \)
11 \( 1 + 14T + 1.33e3T^{2} \)
13 \( 1 + iT - 2.19e3T^{2} \)
17 \( 1 - 46iT - 4.91e3T^{2} \)
19 \( 1 - 19T + 6.85e3T^{2} \)
23 \( 1 + 46iT - 1.21e4T^{2} \)
29 \( 1 + 14T + 2.43e4T^{2} \)
31 \( 1 + 133T + 2.97e4T^{2} \)
37 \( 1 - 258iT - 5.06e4T^{2} \)
41 \( 1 - 84T + 6.89e4T^{2} \)
43 \( 1 + 167iT - 7.95e4T^{2} \)
47 \( 1 + 410iT - 1.03e5T^{2} \)
53 \( 1 + 456iT - 1.48e5T^{2} \)
59 \( 1 + 194T + 2.05e5T^{2} \)
61 \( 1 + 17T + 2.26e5T^{2} \)
67 \( 1 + 653iT - 3.00e5T^{2} \)
71 \( 1 + 828T + 3.57e5T^{2} \)
73 \( 1 + 570iT - 3.89e5T^{2} \)
79 \( 1 + 552T + 4.93e5T^{2} \)
83 \( 1 - 142iT - 5.71e5T^{2} \)
89 \( 1 - 1.10e3T + 7.04e5T^{2} \)
97 \( 1 - 841iT - 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.236608865731083763355389776747, −8.490078953783317211010443185000, −7.66770248606964398152314325281, −6.72043598227828869950645212363, −5.75688026059346262893877801932, −4.92064878766796327484429902369, −3.98829699584281758309677404845, −3.10458170886009886005081542092, −1.84938106257661067139180973486, −0.33226466449880231217591547039, 0.997453533672714072584271601255, 2.22803927767488163653189640446, 3.13964558403526928726489327418, 4.37812333010377834639422300518, 5.46025372065920046688909614585, 6.09493377238305412731079992222, 7.28703502884847903674895974005, 7.63425352151050579720158848178, 8.777134374669988223617351143887, 9.345351384744648606772442839705

Graph of the $Z$-function along the critical line